TEPUNG KOMPOSIT BERBASIS TEPUNG SUKUN (Artocarpus altilis) HASIL MODIFIKASI ALKALI UNTUK PEMBUATAN BISKUIT

Alkaline Treated Breadfruit (Artocarpus altilis) - Based Composite Flour for the Making of Biscuit

Yanti Meldasarri Lubis¹, Sri Kumalaningsih² dan Tri Susanto³

1) Staf Pengajar Fakultas Pertanian Universitas Syiah Kuala, Nangroe Aceh Darussalam
2) Staf Pengajar Program Teknologi Hasil Pertanian Pascasarjana Unibraw, Malang

ABSTRACT

The objective of the research was to find out the optimum alkaline treatment to produce a light colour, starch-rich flour containing high levels of undamaged starch, intended for the making of a formulated biscuit. The research was divided into two experiments. First, a factorial randomized block design experiment with two factors: the concentration of NaOH (0.04 %, 0.06% and 0.08%) and the dipping time (15, 30, and 45 minutes). The second experiment was the use of the Linear Programming approach supported by the QSB to obtain the desirable biscuit formula.

The results of the first experiment indicated that the breadfruit flour dipped for 45 min in the 0.08% NaOH solution was the best one. The treated flour at a moisture content of 6.63% contains 60.88% starch, 22.85% amylose, 3.25% protein, 6.26% fat, and the L value (degree of Lightness) of 74.9, the water absorption index of 4.80 g/g, initiation of gelatinization temperature of 69.3°C, gelatinization temperature of 80.9°C, maximum viscosity of more than 2000 AU and undamaged granules. The best results of the second experiment were the biscuit formula containing 31.76% breadfruit flour, 20% wheat flour, 13.03% red bean flour, which meets with the nutrition requirement. The texture and breaking force of the formulated biscuit was not significantly different with the one of the biscuit made without the addition of breadfruit flour (the control), but has the lower L value. Moreover, except the crispness, the colour, aroma and the taste of the formulated biscuit were found the best significantly different from those of the control biscuit.

Key words: Breadfruit flour, Alkaline Modification (NaOH), biscuit, Linier Programming Formulation.

PENDAHULUAN

Tanaman sukun berbua sepanjang tahun, mudah ditanam dan dirawat, dan dapat tumbuh dengan baik pada areal kering maupun marjin dan potensial dikembangkan sebagai sumber karbohidrat (Graham and Bravo, 1981). Buah sukun memiliki kandungan protein 1,3 g, lemak 0,3 g, karbohidrat 25,2 g dan kalsium 21 mg, besi 0,4 mg dan fosfor 59 mg dengan sumber energi 108,0 kalori (Considine and Considine, 1982).

Di Indonesia, komoditas sukun belum sepopuler bahan pangan berhari lainnya, seperti ubi kayu, ketelang dan pisang. Buah sukun tergolong kedalam bahan pangan yang mudah rusak. Hal ini disebabkan buah sukun tergolong buah klimaterik, sehingga memiliki daya simpan yang pendek sekitur 7 hari setelah panen (Noviarsa, Fardiaz, Andarwulan dan Adawiyah, 2002). Pengolahan buah sukun menjadi tepung merupakan salah satu alternatif untuk
memperpanjang umur simpan komoditi sukan, menanggulangi masalah kerusakan pasca panen, menyediakan produk pangan sumber karbohidrat yang tahan lama dan penganekebagaman menu makanan.

Omojuwu (2003) melakukan penelitian pembuatan biskuit dengan perbandingan tepung terigu:tepung sukan (33% : 67%), dimana kadar protein biskuitnya 5,59 ± 0,02%. Penelitian ini menunjukkan tepung sukan sebagai bahan dasar dalam pembuatan biskuit. Oleh karena itu, pembuatan biskuit dari tepung sukan untuk substitusi tepung terigu, serta penambahan tepung kacang merah untuk meningkatkan kandungan gizi biskuit.

Penelitian ini bertujuan untuk mendapatkan konsentrasi natrium hidroksida (NaOH) dan larutan perendaman yang terbaik untuk menghasilkan tepung sukan dengan pati tinggi (granula tidak rusak) dan mencegah pencoklatan pada tepung sukan, serta mendapatkan formula campuran tepung sukan, tepung terigu dan tepung kacang merah yang tepat untuk menghasilkan biskuit.

BAHAN DAN METODE

Bahan dan alat

Bahan yang digunakan adalah buah sukun jenis gundul, tepung terigu, kacang merah, margarin, telur, kula halus, garam, dan baking powder.

Peralatan yang digunakan adalah cabinet dryer, Bradender amylograph, soxhlet aparatus, alat kipas dah, color reader, viskometer, spektrofotometer dan peralatan gelas untuk analisis.

Metode

Penelitian terdiri dari 2 tahap. Tahap I bertujuan meningkatkan perbuatan sukan dengan perlakuan penambahan konsentrasi NaOH (0,04; 0,06 dan 0,08%) dan larutan perendaman(15, 30 dan 45 menit) yang berbeda. Penelitian tahap II bertujuan untuk menyusun formula biskuit dengan menggunakan teknik optimalisasi pemrograman linier.

Formulasi Model

Fungsi tujuan dan fungsi kondisi dalam bentuk notasi matematis adalah:

\[Z = C_1X_1 + C_2X_2 + C_3X_3 + C_4X_4 + C_5X_5 + C_6X_6 + C_7X_7 + C_8X_8 \]

Fungsi kriteria meliputi:

- \(P, X_1 + P, X_2 + P, X_3 + P, X_4 \leq 6,5 \) g (protein)
- \(L, X_1 + L, X_2 + L, X_3 + L, X_4 + L, X_5 \geq 9,5 \) g (lemak)
- \(K, X_1 + K, X_2 + K, X_3 + K, X_4 + K, X_5 + K, X_6 \geq 70 \) g (karbohidrat)
- \(X_7 = 35 \) g (jumlah tepung sukan yang digunakan)
- \(X_8 \leq 20 \) g (jumlah tepung terigu yang digunakan)
- \(X_9 \leq 10 \) g (jumlah tepung kacang merah yang digunakan)
- \(X_{10} = 15 \) g (jumlah telur yang digunakan)
- \(X_{11} \leq 15 \) g (jumlah margarin yang digunakan)
- \(X_{12} \leq 20 \) g (jumlah gula halus yang digunakan)
- \(X_{13} = 0,3 \) g (jumlah baking powder yang digunakan)
- \(X_{14} = 0,1 \) g (jumlah garam yang digunakan)
- \(X_{15} = X_1 + X_2 + X_3 + X_4 + X_5 + X_6 = 100 \) g (jumlah bahan campuran)

\[\begin{align*}
X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8, X_9, X_{10}, X_{11}, X_{12}, X_{13}, X_{14}, X_{15} \end{align*} \]
Pemodelan diproses menggunakan pengaruh lunak dengan program Quantitative System for Business (QSB) versi 3.0 untuk memudahkan perhitungan.

Pembuatan Tepung Sukun
Buah sukin disortasi sehingga dipisahkan buah yang seragam tingkat kemutangan dan ukuran buahnya. Seluas mi dipotong 8 atau 6 bagian, lalu ditiru ke dalam air untuk menghindari terjadinya pencoklatan. Buah sukin dikupas dan dibuang empulurnya, kemudian dicuci dengan air mengalir. Potongan buah kemudian diiris dengan menggunakan slicer dengan ketebalan kurang lebih 2 mm dan direndam dalam larutan NaOH dengan konsentrasi 0,01%, 0.06%, 0.08% dan waktu perendaman 15, 30 dan 45 menit. Selanjutnya buah irisan sukin dicuci dengan air mengalir dan ditiriskan. Kemudian dikeringkan dengan menggunakan pengering kabinet selama 12 jam suhu 60°C sampai kadar air bahan 10%. Selanjutnya diakukan penepungan dengan alat penepung dan diayak dengan ayakan 70 mesh.

Pembuatan Tepung Kacang Merah
Biji kacang merah yang telah disortasi dicuci bersih, direndam dalam air hingga suhu 60°C selama 2 jam, bertujuan menurunkan kadar air anti gizi dan mempermudah pengupasan kulit. Selanjutnya biji kacang merah tanpa kulit dikeringkan pada suhu 60°C, sampai kadar air maksimal 10%. Kemudian biji digiling halus dengan blender dan dilakukan pengayaan dengan menggunakan ayakan ukuran 70 mesh.

Pembuatan Biskuit
Bahan-bahan ditimbang sesuai dengan formulasi. Kuning telur, margarin, gula halus, garam dan baking powder dicampur dan diaduk dengan menggunakan mixer dengan kecepatan rendah (2) selama 2 menit. Setelah adonan tercampur rata, kemudian campuran tepung yang sudah disiapkan dimasukkan dan diaduk dengan kecepatan rendah (1) selama 5 menit. Pembuatan lembaran dengan ketebalan 0.2 cm dengan menggunakan roller kuy. Berikutnya dilakukan pencetakan dengan menggunakan cetakan berbentuk persegi panjang berukuran 2 x 3.5 cm, kemudian ditempatkan di atas loyang yang sudah diolesi margarin. Selanjutnya dilakukan pemanggangan dengan oven pada suhu 165°C selama 20 menit. Biskuit selanjutnya didinginkan pada ruang ruang dan dikemas.

HASIL DAN PEMBAHASAN
Penelitian Tahap I
Kadar Pati dan Kadar Amilosa
Kadar pati tepung sukin berkisar antara 50,70 – 60,86%. Kadar amilosa tepung sukin berkisar antara 19, 27 – 22,58%. Rerata kadar pati dan kadar amilosa tepung sukin berdasarkan konsentrasi NaOH dapat dilihat pada Tabel 1. Pada konsentrasi NaOH tertinggi (0,08%) menghasilkan kadar pati dan kadar amilosa tepung sukin yang tinggi.

Tingginya kadar pati dan kadar amilosa diduga karena enzim yang berperan pada hidrolisis pati dan amilosa menjadi molekul-molekul yang lebih kecil menjadi tidak aktif. Hal ini disebabkan NaOH mempunyai sifat sebagai agen kuat yang mengakibatkan enzim yang diperlukan menghidrolisis pati tidak stabil pada kondisi basa, sehingga terjadi inaktivasi enzim. Hasil pengukuran pH larutan perendaman adalah 12,0 - 12,3. Enzim menunjukkan aktivitas maksimum pada kisaran pH optimum, yang semakin tinggi antara pH 4,5 sampai 8,0 (Winarno, 1995).

Lama perendaman berpengaruh nyata (p<0,05) terhadap kadar pati dan kadar amilosa tepung sukin. Rerata kadar pati dan kadar amilosa tertinggi terdapat pada lama perendaman 45 menit adalah 59,81% dan 21,71%. Hal ini disebabkan semakin lama waktu perendaman semakin besar penetrasi larutan NaOH ke dalam bahan, yang mengakibatkan aktivitas cairan yang menghidrolisis pati menjadi inaktif, sehingga pati dan amilosa tidak dapat terhidrolisis. Peningkatan kadar pati juga dikarenakan basa yang menyebabkan kandungan protein dan lemak berkurang, sehingga tepung sukin yang diperlakukan dengan alkali mempunyai pati yang lebih tinggi.
Kadar Protein

Kadar protein tepung sukun berkisar 3,25 - 3.55%. Tidak terdapat interaksi yang nyata (p>0.05) antara konsentrasi NaOH dan lama perendaman, tetapi masing-masing faktor berpengaruh nyata (p<0.05) terhadap kadar protein tepung sukun.

Kadar Lemak

Kadar Air

Hasil pengamatan kadar air tepung sukun berkisar antara 6,41 - 9,39%. Hasil analisis ragan menunjukkan tidak terlihat adanya interaksi antara perlakuan reaksi penyuburan (saponifikasi).
konsentrasi NaOH dengan lama perendaman, serta masing-masing faktor tidak berpengaruh nyata (p>0,05) terhadap kadar air tepung sukin. Perlakuan alkali tidak menyebabkan pecahnya granula (dapat dilihat pada Gambar 1 dan 2) sehingga tidak mempengaruhi kadar air dari tepup.

Nilai kadar air tepung sukin tersebut sudah memenuhi kriteria kadar air standar SNI tepung-terigu, tepung jagung, tepung beras, dan tepung satu), yaitu maksimum 14%. Hal ini terkait dengan jumlah air beras yang terdapat di dalam tepung sukin tidak cukup untuk pertumbuhan mikroba, sehingga mikroba tersebut tidak dapat hidup. Berdasarkan hal tersebut dilarapkan tepung sukin yang dihasilkan memiliki umur simpan yang lebih lama.

Kadar Abu

Kecerahan (L)
Hasil pengamatan menunjukkan bahwa rerata nilai kecemerahan (L) tepung sukin berkisar antara +73,2 sampai dengan +74,9. Hasil analisis menunjukkan bahwa perlakuan interaksi antara konsentrasi NaOH dan lama perendaman berpengaruh nyata (p<0,05) terhadap tingkat kecerahan tepung sukin.

Tabel 3 menunjukkan bahwa kombinasi perlakuan konsentrasi NaOH 0,08% dengan lama perendaman 45 menit menunjukkan tingkat kecerahan tertinggi dengan nilai +74,9. Jika dibandingkan dengan tepung terigu, maka tingkat kecerahan tepung sukin yang diperoleh tidak berbeda jauh, dimana nilai L tepung terigu adalah +76,0.

Natrium hidroksida merupakan bahan yang dapat menginaktivkan enzim yang berperan dalam reaksi pencoklatan enzimatis. Enzim yang berperan dalam reaksi pencoklatan adalah polifeno1 oksida, fenol oksida, fenoliasi atau kateholiasi yang secara sistematis dikelompokkan dalam enzim c-difenol (Bennion, 1980; Susanto dan Saneto, 1994), dimana enzim polifenol oksida pH optimumnya 6 - 7 (Siddiq, et al., 1992 dalam Amir, 2001). Perlakuan perendaman dengan alkali menyebabkan penurunan aktivitas

Indeks Absorbsi Air

Indeks absorbsi air tepung sukon berkisar antara 4,13 – 4,80 g/g. Hasil analisis ragam menunjukkan bahwa interaksi konsentrasi NaOH dan lama perendaman tidak berpengaruh nyata (p>0,05), tetapi masing-masing faktor berbeda nyata (p<0,05) terhadap indeks absorbsi air tepung sukon.

Perlakuan terbaik penelitian tahap I

Hasil perhitungan dengan metode indeks efektifitas (de Garmo, et al., 1984 dan Susurini, 2003) menunjukkan bahwa tepung sukon perlakuan konsentrasi NaOH 0,08% dengan lama perendaman 45 menit memberikan hasil terbaik dengan nilai indeks efektifitas 4,978.

Foto Mikroskopik

Foto mikroskopik (Gambar 1 dan 2) menunjukkan bahwa granula pati tepung sukon berbentuk bulat. Keragaman ukuran granula pati sukon berkisar antara 10 – 19 μm. Pada Gambar 1 dan Gambar 2 terlihat bahwa tidak ada perubahan bentuk yang signifikan (nyata) granula pati sukon antara tepung sukon tanpa perlakuan dengan tepung sukon hasil perlakuan terbaik. Hal ini berarti konsentrasi NaOH 0,08% dan lama waktu perendaman 45 menit tidak mengubah bentuk granula atau menyebabkan pecahnya granula pati.

Sifat Amilografi

![Gambar 1. Granula Tepung Suku Tanpa Perlakuan](image1)

![Gambar 2. Granula Tepung Suku Tanpa Perlakuan](image2)

Dilihat dari Tabel 4 suhu awal gelatinisasi dan suhu gelatinisasi tepung sukon perlakuan terbaik nilaiya lebih rendah dari pada tepung sukon tanpa perlakuan. Hal ini diduga dipengaruhi oleh:

Tabel 4. Suhu gelatinisasi tepung sukon

<table>
<thead>
<tr>
<th>Tepung</th>
<th>Suhu awal gelatinisasi°C</th>
<th>Suhu gelatinisasi°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>sukon</td>
<td>76,6</td>
<td>88,6</td>
</tr>
<tr>
<td>sukon **</td>
<td>69,3</td>
<td>80,9</td>
</tr>
</tbody>
</table>

* tepung sukon tanpa perlakuan
** tepung sukon perlakuan terbaik

Gelatinisasi maksimum merupakan suatu kondisi pada saat granula pati telah membebaskan mencapai maksimum, kemudian granula pecah atau rusak dan viskositas mulai menurun (Haryadi, 1983).

Gambar 3. Amilograf tepung sukan tanpa perlakuan

Gambar 4. Amilograf tepung sukan perlakuan terbaik

Berdasarkan grafik amilografi nilai gelatinisasi (viskositas) maksimum tepung sukan tanpa perlakuan 1096 AU, sedangkan nilai gelatinisasi maksimum tepung sukan dari perlakuan terbaik tidak dapat terulkur dalam grafik (nums amilografinya hanya mampu mengukur gelatinisasi maksimum sampai dengan 2000 AU). Adanya alaki menvebahkan rendahnya kandungan protein dan lemak pada tepung sehingga gelatinisasi lebih mudah, sebagai akibatnya gelatinisasi maksimum menjadi tinggi.

Penelitian Optimasi (Tahap II)
Nutrisi Bahan Baku

Komposisi nutrisi bahan baku biskuit dalam setiap gram bahan seperti pada Tabel 5.

Tabel 5. Komposisi nutrisi bahan baku biskuit per gram bahan

<table>
<thead>
<tr>
<th>Komponen</th>
<th>Protein(g)</th>
<th>Lemak(g)</th>
<th>Karbohidrat(g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tepung sukan</td>
<td>3.248</td>
<td>0.610</td>
<td>86.352</td>
</tr>
<tr>
<td>Terigu</td>
<td>6.500</td>
<td>0.000</td>
<td>76.000</td>
</tr>
<tr>
<td>Kacang merah</td>
<td>31.614</td>
<td>1.938</td>
<td>64.650</td>
</tr>
<tr>
<td>Telur</td>
<td>6.530</td>
<td>31.870</td>
<td>11.000</td>
</tr>
<tr>
<td>Margarin</td>
<td>—</td>
<td>82.400</td>
<td>3.600</td>
</tr>
<tr>
<td>Gula halus</td>
<td>—</td>
<td>94.000</td>
<td>—</td>
</tr>
</tbody>
</table>

Harga Bahan Baku

Harga bahan baku digunakan untuk membuat model matematis formula biskuit pada sotusi model sebagai fungsi tujuan. Harga bahan baku biskuit seperti pada Tabel 6.

Tabel 6. Harga bahan baku biskuit

<table>
<thead>
<tr>
<th>Bahan baku</th>
<th>Harga bahan awal/kg (Rp)</th>
<th>Harga/gram (Rp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tepung sukan</td>
<td>5.830</td>
<td>5.83</td>
</tr>
<tr>
<td>Terigu</td>
<td>4.410</td>
<td>4.41</td>
</tr>
<tr>
<td>Kacang merah</td>
<td>6.700</td>
<td>6.7</td>
</tr>
<tr>
<td>Telur</td>
<td>0.400</td>
<td>0.40</td>
</tr>
<tr>
<td>Margarin</td>
<td>1.120</td>
<td>11.2</td>
</tr>
<tr>
<td>Gula halus</td>
<td>5.500</td>
<td>5.5</td>
</tr>
<tr>
<td>Baking soda</td>
<td>10.000</td>
<td>10.0</td>
</tr>
<tr>
<td>Garam</td>
<td>1.400</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Penerapkan Model

Bahan baku yang digunakan dibatasi dalam jumlah tertentu (minimal atau maksimal) untuk memperoleh kualitas produk yang diinginkan. Data yang diperoleh diolah menggunakan metode pemrograman linier.

Formula biskuit terdiri dari 8 bahan baku yaitu tepung sukan (X1), tepung terigu (X2), tepung kacang merah (X3), telur (X4), margarin (X5), gula halus (X6), baking soda (X7), dan garam (X8).

Model matematis formula biskuit adalah sebagai berikut:

Minimasi Biaya:

\[Z = 5.83X1 + 4.41X2 + 6.7X3 + 6.4X4 + 11.2X5 + 5.5X6 + 10.0X7 + 1.4X8 \]
Dengan memperhatikan kendala:
- \(0.03248X_1 + 0.095X_2 + 0.21614X_3 + 0.1653X_4 + 0.5X_5 + 0.6X_6 + 0.7X_7 + 0.8X_8\) e\(^6\) (protein)
- \(0.0064X_1 + 0.009X_2 + 0.01883X_3 + 0.3187X_4 + 0.824X_5 + 0.6X_6 + 0.7X_7 + 0.8X_8\) e\(^9.5\) (lemak)
- \(0.86352X_1 + 0.75X_2 + 0.64553X_3 + 0.011X_4 + 0.036X_5 + 0.94X_6 + 0.7X_7 + 0.8X_8\) e\(^7\) (karbohidrat)

\[Z = 5.85X_1 + 4.45X_2 + 6.7X_3 + 6.4X_4 + 11.2X_5 + 6.5X_6 + 10.0X_7 + 1.4X_8\]

Tahap selanjutnya mengaplikasikan formula bikuit untuk penambatan bikuit.

Tabel 8. Perbandingan kandungan nutrisi bikuit dengan standar SNI per 100 gram bahan

<table>
<thead>
<tr>
<th>Komponen</th>
<th>Standar</th>
<th>Bikuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein</td>
<td>6.50</td>
<td>8.157</td>
</tr>
<tr>
<td>Lemak</td>
<td>9.50</td>
<td>1.855</td>
</tr>
<tr>
<td>Karbohidrat</td>
<td>7.00</td>
<td>6.751</td>
</tr>
</tbody>
</table>

Dengan memperhatikan kendala:
- \(0.03248X_1 + 0.095X_2 + 0.21614X_3 + 0.1653X_4 + 0.5X_5 + 0.6X_6 + 0.7X_7 + 0.8X_8\) e\(^6\) (protein)
- \(0.0064X_1 + 0.009X_2 + 0.01883X_3 + 0.3187X_4 + 0.824X_5 + 0.6X_6 + 0.7X_7 + 0.8X_8\) e\(^9.5\) (lemak)
- \(0.86352X_1 + 0.75X_2 + 0.64553X_3 + 0.011X_4 + 0.036X_5 + 0.94X_6 + 0.7X_7 + 0.8X_8\) e\(^7\) (karbohidrat)

Tabel 7. Hasil optimal pencampuran bahan baku berbasis 100 g produk berdasarkan pemodelan awal

<table>
<thead>
<tr>
<th>Jenis bahan</th>
<th>Jumlah (g)</th>
<th>Hara satuan (Rp/100g)</th>
<th>Harga (Rp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tepung sukun</td>
<td>33.75</td>
<td>5.85</td>
<td>197.438</td>
</tr>
<tr>
<td>Terigu</td>
<td>20.00</td>
<td>4.45</td>
<td>89.000</td>
</tr>
<tr>
<td>Kacang merah</td>
<td>10.57</td>
<td>6.70</td>
<td>69.478</td>
</tr>
<tr>
<td>Telur</td>
<td>7.54</td>
<td>6.40</td>
<td>48.896</td>
</tr>
<tr>
<td>Margaria</td>
<td>7.84</td>
<td>11.20</td>
<td>87.808</td>
</tr>
<tr>
<td>Gula balas</td>
<td>20.06</td>
<td>5.50</td>
<td>110.000</td>
</tr>
<tr>
<td>Baking soda</td>
<td>0.30</td>
<td>10.00</td>
<td>3.000</td>
</tr>
<tr>
<td>Garam</td>
<td>0.10</td>
<td>1.400</td>
<td>0.140</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
<td>606.761</td>
<td></td>
</tr>
</tbody>
</table>

Penyelesaian Model Hasil Modifikasi

Penyelesaian model hasil modifikasi dari formula bikuit adalah sebagai berikut:

- Minimasi Biaya:
Tabel 9. Hasil optimasi biaya produksi biscuit setelah modifikasi

<table>
<thead>
<tr>
<th>Jenis bahan</th>
<th>Jumlah bahan (g)</th>
<th>Harga bahan (Rp/g)</th>
<th>Total harga (Rp/100g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tepung sukon</td>
<td>31,75</td>
<td>5,35</td>
<td>169.63</td>
</tr>
<tr>
<td>Tepung coklat</td>
<td>20,00</td>
<td>4,45</td>
<td>89,00</td>
</tr>
<tr>
<td>Tepung</td>
<td>6,83</td>
<td>6,40</td>
<td>42,43</td>
</tr>
<tr>
<td>Gula balas</td>
<td>8,19</td>
<td>1,12</td>
<td>9,22</td>
</tr>
<tr>
<td>Susu pertah</td>
<td>1,30</td>
<td>10,00</td>
<td>13,00</td>
</tr>
<tr>
<td>Garam</td>
<td>0,10</td>
<td>1,40</td>
<td>0,14</td>
</tr>
<tr>
<td>Total</td>
<td>100,00</td>
<td></td>
<td>609,38</td>
</tr>
</tbody>
</table>

Tabel 10. Perbandingan komposisi nutrisi biscuit hasil formulasi dengan standar SNI per 100 gram bahan

<table>
<thead>
<tr>
<th>Komponen</th>
<th>Standard</th>
<th>Formulasi biscuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein</td>
<td>9,5</td>
<td>8,81</td>
</tr>
<tr>
<td>Lemak</td>
<td>2,5</td>
<td>23,26</td>
</tr>
<tr>
<td>Karbohidrat</td>
<td>72,00</td>
<td>72,00</td>
</tr>
<tr>
<td>Air</td>
<td>maks. 3</td>
<td>3,468</td>
</tr>
</tbody>
</table>

menunjukkan tekstur biscuit tidak berbeda nyata (p>0,05) antara biscuit formulasi dengan biscuit kontrol.

Daya patah adalah sifat fisik pangan yang berhubungan dengan tekanan yang memetakan produk. Semakin rendah nilai daya patah produk kering maka kerenyahan produk maksin tinggi. Hasil uji menunjukkan daya patah biscuit tidak berbeda nyata (p>0,05) antara biscuit formulasi dengan biscuit kontrol.

Tingkat kecerahan biscuit formulasi adalah 55,70 dan biscuit kontrol 56,60. Berdasarkan hasil uji t, terdapat perbedaan kecerahan biscuit yang nyata antara biscuit formulasi dengan biscuit kontrol. Hal ini disebabkan karena tepung sukon mempunyai kecerahan yang rendah (nilai L = 74,91) dibandingkan kecerahan tepung terigu (nilai L = 76) yang berpengaruh pada produk akhir, sehingga biscuit formulasi nilai kecerahannya lebih rendah dari biscuit perbandingan.

Sifat organoleptik

Hasil uji organoleptik menggunakan Mann-Whitney Test menunjukkan bahwa terdapat perbedaan nyata (p<0,05) pada warna, aroma dan rasa antara biscuit formulasi dengan biscuit kontrol, sedangkan kerenyahan antara biscuit formulasi dengan biscuit kontrol tidak berbeda nyata (p>0,05).

Hasil pengujian panelis dapat diketahui bahwa warna biscuit kontrol lebih disukai daripada warna biscuit hasil formulasi. Berdasarkan Mann-Whitney Test warna biscuit formulasi berbeda nyata (p<0,05) dengan warna biscuit kontrol. Hal ini terjadi karena warna tepung sukon mempunyai kecerahan yang lebih rendah dibandingkan dengan kecerahan yang lebih berpengaruh pada produk akhir.

Nilai rata-rata kesukaan panelis pada aroma biscuit formulasi dan biscuit kontrol masing-masing adalah 5,80 (agar tidak menyukai) dan 7,76 (sangat menyukai). Berdasarkan hasil Mann-Whitney Test aroma dari kedua produk yaitu biscuit hasil formulasi dengan bisquit kontrol menunjukkan perbedaan yang nyata (p<0,05). Panelis kurang menyukai aroma biscuit formulasi dibandingkan dengan biscuit kontrol, hal ini diduga dikarenakan tepung sukon memiliki aroma khusus sukon yang kurang biasa diterima pada biscuit.

Nilai rata-rata kesukaan panelis pada rasa biscuit formulasi dan biscuit kontrol masing-masing adalah 4,08 (netral) dan 5,40 (agar menyukai). Berdasarkan hasil Mann-Whitney Test rasa biscuit formulasi berbeda nyata (p<0,05) dengan rasa biscuit kontrol. Hasil pengujian panelis dapat diketahui bahwa rasa biscuit kontrol lebih disukai daripada rasa biscuit hasil formulasi, hal ini diduga disebabkan tepung sukon memiliki rasa khas dari bahan sukon yang berpengaruh pada biscuit.

Kerenyahan biscuit diukur dengan cara

Tabel 11. Hasil uji sifat fisik dan organoleptik biscuit formulasi dan biscuit kontrol

<table>
<thead>
<tr>
<th>Jenis biskuit</th>
<th>Tekstur (ks/cm³)</th>
<th>Daya patah (N/m)</th>
<th>Kecearan (L)</th>
<th>Warna</th>
<th>Aroma</th>
<th>Rasa</th>
<th>Kerenaan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formulasi</td>
<td>1,177</td>
<td>37,572</td>
<td>55,700</td>
<td>3,88</td>
<td>3,8</td>
<td>4,08</td>
<td>4,15</td>
</tr>
<tr>
<td>Kontrol</td>
<td>0,941</td>
<td>37,340</td>
<td>56,600</td>
<td>5,68</td>
<td>4,78</td>
<td>5,40</td>
<td>4,48</td>
</tr>
</tbody>
</table>

Keterangan: Skala organoleptik 1-7 (sangat tidak menyukai-sangat menyukai)
mudah atau tidaknya biskuit hancur ketika digigit. Nilai rata-rata kesukaan panelis pada kerennahan biskuit formulasi dan biskuit kontrol masing-masing adalah 4,16 (netral) dan 4,48 (netral). Berdasarkan hasil Mann-Whitney Test menunjukkan bahwa kerennahan dari biskuit formulasi dengan biskuit kontrol tidak berbeda nyata (p > 0,05). Hal ini menunjukkan subtitusi tepung sukan pada pembuatan biskuit tidak menurunkan mutu kerennahan biskuit yang dihasilkan, dan proses subtitusi dengan tepung sukan dapat dilaksanakan.

KESIMPULAN

Konsentrasi NaOH 0,08% dan lama perendaman 45 menit menghasilkan produk tepung sukan terbaik dengan kadar pati 60,86%, gula reduksi 4,66%, protein 3,25%, lemak 5,25%, kadar asa 3,14% kadar air 6,63%, nilai kecerahan (L) 74,90, indeks absorpsi air 4,80 g/g, tidak terjadi perubahan granula, suhu awal gelatinisasi 69,3°C, suhu gelatinisasi 80,0°C dan gelatinisasi maksimum > 2000 AU dengan nilai indeks efektifitas tertinggi sebesar 4.978.

Formula biskuit hasil optimasi adalah tepung sukan 31,76%, tepung terigu 20%, tepung kacang merah 13,03%, telur 6,63%, margarin 8,19%, gula halus 20%, baking soda 0,3% dan garam 0,1% dengan biaya pemakaian bahan Rp 603,38/100 g. Biskuit yang dihasilkan telah memenuhi kandungan nutrisi yang telah ditetapkan. Hasil uji fisik untuk tekstur (kekerasan) dan daya patah biskuit formulasi dengan biskuit kontrol tidak berbeda nyata, tetapi untuk nilai kecerahan berbeda nyata. Hasil uji organoleptik biskuit untuk warna, aroma dan rasa berbeda nyata, sedangkan kerennahan tidak berbeda nyata dengan biskuit kontrol.

Perlu penelitian lebih lanjut pada formulasi biskuit untuk perbaikan aroma dan rasa dari biskuit, karena aroma dan rasa khas dari tepung sukan yang bertebahan kurang disukai panelis.

DAFTAR PUSTAKA

