BIOREMEDIASI MERKURI MENGGUNAKAN BAKTERI INDIGENOUS DARI LIMBAH PENAMBANGAN EMAS DI TUMPANG PITU, BANYUWANGI

Saundra Rosallina Lutfi, Wignyanto Wignyanto, Evi Kurniati
  JTP, pp. 15-24  

Abstract


ABSTRAK

Limbah merkuri merupakan suatu limbah berbahaya yang sering digunakan sebagai proses amalgamasi dalam penambangan emas. Dampak dari merkuri akan semakin meningkat terlebih para penambang tidak pernah mengolah limbah merkuri tersebut sebelum dibuang ke lingkungan, sehingga diperlukan suatu metode untuk menjadikan limbah merkuri tersebut tidak beracun atau bahkan hilang. Salah satu metode yang dapat dilakukan yaitu melakukan proses bioremediasi. Pada penelitian ini, proses bioremediasi dilakukan dengan menggunakan bakteri indigenous yang diisolasi dari limbah penambangan emas Tumpang Pitu, Banyuwangi. Bakteri indigenous tersebut didapatkan dengan mengambil sampel berupa sedimen dan sampel cair dari penambangan emas, dan kemudian dilakukan proses isolasi dan seleksi menggunakan merkuri dengan kadar 0-130 ppm. Proses ini untuk mendapatkan bakteri yang resisten terhadap kadar merkuri tertinggi dan mampu untuk melakukan proses degradasi merkuri terbaik. Selanjutnya, dilakukan proses identifikasi bakteri yang terbukti mampu untuk melakukan proses bioremediasi. Penelitian ini memiliki tujuan untuk mendapatkan bakteri indigenous dari limbah penambangan emas pada proses bioremediasi limbah merkuri di suatu lingkungan sehingga tidak berbahaya bagi lingkungan. Hasil penelitian menunjukkan bahwa bakteri jenis Morganella morganii yang resisten terhadap merkuri dan mampu melakukan bioremediasi merkuri hingga mencapai 92.46%

 

ABSTRACT

Mercury waste is a hazardous waste that often used as an amalgamation process in gold mining. Impact from mercury will increase, especially a miner never to process mercury waste before it is discharged into the environment, so the method is needed to make the mercury waste can non-toxic or even lost. One method that can be done is doing bioremediation process. In this research, bioremediation process was done by using indigenous bacteria isolated from Tumpang Pitu gold mining waste, Banyuwangi. To get the bacteria Indigenous samples taken in the form of sediment samples and liquid samples from gold mining and then processed isolation and selection using mercury with levels of 0-130 ppm. This process is to obtain bacteria that are resistant to the highest mercury levels and are able to perform the best mercury degradation process. Then carried out the identification process of bacteria that proved able to perform bioremediation process. This study aims to obtain indigenous bacteria from gold mining waste for bioremediation process of mercury waste in an environment so as not to be harmful to the environment. It was found that Morganella morganii bacteria were resistant to mercury and able to do mercury bioremediation up to 92.46%


Keywords


Bioremediasi; Isolasi Bakteri; Merkuri; Morganella morganii

Full Text:

PDF

References


Broszeit, S, Hattam, C, Beaumont, N. 2016. Bioremediation of waste under ocean acidification: reviewing the Role of Mytilus edulis. Marine Pollution Bulletin. 103(1):14

Dash, H, R, Das, S. 2015. Bioremediation of Inorganic Mercury Through Volatilization and Biosorption by Transgenic Bacillus cereus BW 03(PPW-05). International Biodeterioration and Biodegradation. 103:179-185

Dash, H, R, Sahu, M, Mallick, B, Das, S. 2017. Functional efficiency of MerA protein among diverse mercury resistant bacteria for efficient use in bioremediation of inorganic mercury. Biochimie. 142:207-215

Davies, G, R. 2014. A toxic free future: is there a role for alternatives to mercury in small-scale gold mining?. Futures. 62:113-119

Dewi, A, K. 2013. Isolasi, identifikasi dan uji sensitivitas Staphylococcus aureus terhadap Amoxicillin dari sampel susu kambing peranakan ettawa (PE) penderita mastitis di wilayah girimulyo, kulonprogo, yogyakarta. Jurnal Sain Veteriner. 31(2):138-150

Fachri, F. 2005. Aplikasi kriging sekuensial pada penaksiran cadangan emas. Jurnal Gradien. 1(1):34-37

Rifai-Hasan, P, A. 2009. Development, power, and the mining industry in papua: a study of freeport indonesia. Journal of Business Ethics. 89(Supplement 2):129-143

Hamann, C, R, Boonchai, W, Wen, L, Sakanashi, E, N, Yu Chu, C, Hamann, K, Hamann MD, C, P, Sinniah, K, Hamann, D. 2014. Spectrometric analysis of mercury content in 549 skin-lightening products: Is mercury toxicity a hidden global health hazard?. Journal of the American Academy of Dermatology. 70(2):281-287

Hema, T, G, Getha, K, Tan, G, Y, A, Sahira, H, L, Syamil, A, M, Fairuz, M, Y, N. 2014. Actinobacteria isolates from tin tailings and forest soil for bioremediation of heavy metals. Journal of Tropical Forest Science. 26(1):153-162

Huber, J, Leopold, K. 2016. Nanomaterial based strategies for enhanced mercury trace analysis in environmental and drinking waters. TrAC Trends in Analytical Chemistry. 80:280-292

Karmanto, Kencanawati, D, Adlan, M. 2013. Menimbang Masa Depan Bisnis Tambang. Media Penilai, Jakarta

Kim, J, H, Lee, S, J, Kim, S, Y, Choi, G, Lee, J, J, Kim, H, J, Kim, S, Park, J, Moon, H, B, Choi, K, Kim, S, Choi, S, R. 2016. Association of food consumption during pregnancy with mercury and lead levels in cord blood. Science of The Total Environment. 563-564:118-124

Kocman, D, Kanduč, T, Ogrinc, N, Horvat, M. 2011. Distribution and partitioning of mercury in a river catchment impacted by former mercury mining activity. Biogeochemistry. 104(1-3):183-201

Kurniati, E, Arfarita, N, Imai, T, Higuchi, T, Kanno, A, Yamamoto, K, Sekine, M. 2014. Potential bioremediation of mercury-contaminated substrate using filamentous fungi isolated from forest

soil. Journal of Environmental Sciences. 26(6):1223-1231

Liu, H, Zhu, J, Hu, Q, Rao, X. 2016. Morganella Morganii, a non-negligent opportunistic pathogen. Int. J. Infect Dis. 50:10-17

Mahbub, K, R, Krishnan, K, Megharaj, M, Naidu, R. 2016. Bioremediation potential of a highly mercury resistant bacterial Strain Sphingobium SA2 isolated from contaminated soil. Chemosphere.

:330-337

Ma, F, Sun, M, Yuan, C, Yao, J, Wang, S. 2014. A novel fluorescent sensor for the sensitive detection of mercury. APCBEE Procedia. 10:12-15

McCarthy, D, Edwards, G, C, Gustin, M, S, Care, A, Miller, M, B, Sunna, A. 2017. An innovative approach to bioremediation of mercury contaminated soils from industrial mining operations.

Chemosphere. 184:694-699

Menteri Lingkungan Hidup. 2004. Peraturan Menteri Negara Lingkungan Hidup Nomer 51 Tahun 2004. Dilihat 26 Agustus 2018.

Mieiro, C, L, Pacheco, M, Duarte, A, C, Pereira, M, E. 2011. Fish consumption and risk of contamination by mercury– considerations on the definition of edible parts based on the case study

of european sea bass. Marine Pollution Bulletin. 62(12):2850-2853

Molamohyeddin, N, Ghafaourian, H, Sadatipour, S, M. 2017. Contamination assessment of mercury, lead, cadmium and arsenic in surface sediments of chabahar Bay. Marine Pollution Bulletin. 124(1):521-525

Morgan, H, R. 1907. Upon the bacteriology of the summer diarrhoea of infants. Br Med J. 2:908–12

Nasikhin, R, Shovitri, M. 2013. Isolasi dan karakterisasi bakteri pendegradasi so lar dan bensin dari pelabuhan gresik. Jurnal Sains dan Seni ITS. 2(2):2337-3520

Neneng, L, Tanduh, Y, Saraswati, D. 2012. Aplikasi metode reklamasi terpadu untuk memperbaiki kondisi fisik, kimiawi, dan biologis, pada lahan pasca penambangan emas di kalimantan tengah. Prosiding Insinas, IPB, Bogor, pp. 81-85

Oliveira, C, S, Oliveira, V, A, Costa, L, M, Pedroso, T, F, Fonseca, M, M, Bernatdi, J, S, Fiuza, T, L, Pereira, M, E. 2016. Inorganic mercury exposure in drinking water alters essential metal homeostasis in pregnant rats without altering rat pup behavior. Reproductive Toxicology. 65:18-23

Pepi, M, Gaggi, C, Bernardini, E, Focardi, S, Lobianco, A, Ruta, M, Nicolardi, V, Volterrani, M, Gasperini, S, Trinchera, G, Renzi, P, Gabellini, M, Focardi, S, E. 2011. International Biodeterioration &

Biodegradation. 65(1):85-91

Peng, Y, Deng, A, Gong, X, Li, X, Zhang, Y. 2017. Coupling process study of lipid production and mercury bioremediation by biomimetic mineralized microalgae. Bioresource Technology. 243:628-633

Public Health England. 2015. UK standards for microbiology investigations identification of Enterobacteriaceae. Dilihat 25 Oktober 2017. < https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/423601/ID_16i4.pdf>

Rembuluwani, N, Dacosta, F, A, Gumbo, J, R. 2014. Environmental risk assessment and risk management strategies for abandoned new union gold mine in malamulele, limpopo, south africa. An Interdisciplinary Response to Mine Water Challenges - Sui, Sun & Wang (eds). 367-

Rondonuwu, SB. 2012. Bioremediasi Limbah Mengandung Merkuri Menggunakan Bakteri Tempatan dengan Sistem Bioreaktor dan Lahan Basah Buatan. Tesis. IPB. Bogor

Sardiani, N, Litaay, M, Budji, R, G, Priosambodo, D, Syahribulan, Dwyana, Z. 2015. Potensi tunikata Rhopalaea sp sebagai sumber inokulum bakteri endosimbion penghasil antibakteri; 1. karakterisasi isolat. Jurnal Alam dan Lingkungan. 6(11):1-10

Selayar, N, A, Tumembouw, S, Mondoringin, L, J, J. 2015. Telaah kandungan logam berat merkuri (Hg) di sekitar teluk manado. Jurnal Budidaya Perairan. 3(1):124-130

Setiawan, C. 2017. Menyingkap harta tersembunyi di pantai prigi, kabupaten trenggalek. Dilihat 30 Oktober 2017.

Shaaban, M, T, Ghozlan, H, A, Maghraby, M, M, E. 2012. Susceptibility of bacteria infecting urinary tract to some antibiotics and essential oils. Journal of Applied Pharmaceutical Science. 2(4):90-98

Sharma, B, Dangi, A, K, Shukla, P. 2018. Contemporary enzyme based technologies for bioremediation: a review. Journal of Environmental Management. 210:10-22

Seija, V, Presentado, J, C, M, Bado, I, Ezdra, R, P, Batista, N, Gutierrez, C, Guirado, M, Vidal, M, Nin, M, Vignoli, R. 2015. Sepsis caused by new delhi metallo-β-lactamase (blaNDM-1) and qnrD-producing Morganella morganii, treated successfully with fosfomycin and meropenem: case report and literature review. International Journal of Infectious Diseases. 30:20-26

Sinha, S, N, Paul, D. 2014. Heavy metal tolerance and accumulation by bacterial strains isolated from waste water. J. Chem. Biol. Phys. Sci. 4:812-817

Siahaan, B, C, Utami, S, R, Handayanto, E. 2014. Fitoremediasi tanah tercemar merkuri menggunakan Lindernia Crustacea, Digitaria Radicosa, dan Cyperus Rotundus serta pengaruhnya terhadap

pertumbuhan dan produksi tanaman jagung. Jurnal Tanah dan Sumberdaya Lahan. 1(2):35-51

Supit, J, M. 2009. Estimasi cadangan tereka emas sekunder pada KP PT indonesia timur raya nabire papua. Istech. 1(1)

Vinogradof, E, Nash, J, H, Foote, S, Young, N, M. 2015. The structure of the Morganella Morganii lipopolysaccharide core region and identification of its genomic loci. Carbohydr. Res. 402:232-235

Vithanage, N, R, Yeager, T, R, Jadhav, S, R, Palombo, E, A, Datta, N. 2014. Comparison of identification systems for psychotrophic bacteria isolated from raw bovine milk. Int. J. Food. Microbiol. 189(1):26-38

Wu, H, Huo, Y, Zu, M, Hu, M, Wei, Z, He, P. 2015. Eutrophication assessment and bioremediation strategy using seaweeds co-cultured with aquatic animals in an enclosed bay in china. Mar. Pollut Bull. 95(1):342-349

Zulfikah, Z, Basir, M, Isrun, B. 2014. Konsentrasi merkuri (Hg) dalam tanah dan jaringan tanaman kangkung (Ipomoea Reptans) yang diberi bokashi kirinyu (Chromolaena Odorata L.) pada limbah

tailing penambangan emas poboya kota palu. Agrotekbis. 2(6):587-595


Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Jurnal Teknologi Pertanian

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.