HIDROLISIS RUMPUT LAUT EUCHEMA COTTONII MENGGUNAKAN ASAM SULFAT DAN KULTUR INAKTIF UNTUK PRODUKSI PREBIOTIK

Authors

  • Vitta Rizky Permatasari Bogor Agricultural University
  • Dwi Setyaningsih
  • Liesbetini Haditjaroko

DOI:

https://doi.org/10.21776/ub.jtp.2018.019.02.3

Keywords:

Eucheumma cottonii, Hidrolisis, Prebiotik

Abstract

ABSTRAK

Produksi rumput laut di Indonesia pada tahun 2016 meningkat hampir 4 kali lipat dari tahun 2010. Nilai ini menunjukkan potensi rumput laut yang sangat besar. Jenis yang paling sering dimanfaatkan yaitu Eucheumma cottonii sebagai penghasil karagenan, yang berpotensi sebagai prebiotik karena mengandung galakto-oligosakarida. Tujuan dari penelitian ini yaitu mendapatkan perlakuan lanjut terhadap hidrolisat agar mendapatkan aktivitas prebiotik yang paling baik serta mengkarakterisasi sifat prebiotik dari hidrolisat. Tahapan penelitian meliputi pre hidrolisis, hidrolisis dengan campuran asam sulfat dan kultur inaktif, perlakuan lanjutan dengan 3 jenis (penyaringan, pengendapan, dan tanpa perlakuan), karakterisasi kimia dan mikrobiologis serta pengujian kadar galaktosa dengan HPLC. Hasil dari penelitian ketiga sampel jenis perlakuan, ternyata tanpa perlakuan mempunyai hasil yang paling baik dibandingkan kedua perlakuan yang lain, dengan nilai kadar gula reduksi sebesar 0.37%, total gula 2.88%, pH 4.95, total asam 0.15%, total BAL 62 × 107 CFU/ml, kadar galaktosa dan GOS masing-masing sebesar 0.14% dan 1.18%

 

ABSTRACT

Indonesia’s seaweed production in 2016 increased almost 4-fold from 2010. This value indicates a great potential of the seaweed. The most widely used type is Eucheuma cottonii which utilized in carrageenan production. In addition, E. cottonii has potential as a prebiotic due to the galacto-oligosaccharides component. The purpose of this sudy was to determined the best types of treatment of hydrolisate for reached probiotic activity and characterized probiotic content of hydolisate. The preparation stage consists of pre-hydrolysis, hydrolysis using sulfuric acid and inactive culture, and followed by three different types of treatment (filtration, precipitation and without any treatment). The analytical stage consists of chemical and microbiological characterization, measured galactose using HPLC. The results showed that untreated samples had the best results compared with the other two treatments,  with reduction sugar content 0.37%, total sugar 2.88%, pH 4.95%, total acid 0.15%, total BAL 62 × 107 CFU/ml, galactose and GOS content are 0.14% and 1.18%

References

Arsianti, A, Aziza, Y, A, N, Kurniasari, K, D, Mandasari, B, K, D, Masita, R, Zulfa, F, R, Dewi, M, K, Zagloel, C, R, Z, Azizah, N, N, Putrianingsih, R. 2018. Phytochemical test and cytotoxic activity of macroalgae Eucheuma cottonii against Cervical HeLa cells. Pharmacogn. J. 10(5):1012-1017

Bakheet, B, Islam, Md, A, Beardall, J, Zhang, X, McCarthy, D. 2018. Effective electrochemical inactivation of Microcystis aeruginosa and degradation of microcystins via a novel solid polymer electrolyte sandwich. Chemical Engineering Journal. 350:616-626

Butscher, D, Loon, H, V, Waskow, A, Von Rohr, P, R, Schuppler, M. 2016. Plasma inactivation of microorganisms on sprout seeds in a dielectric barrier discharge. International Journal of Food Microbiology. 238:222-232

Chaplin, MF, Buckle, C. 1990. Enzyme Technology. Cambridge University Press. UK

Derkach, S, R, Voron’ko, N, G, Kuchina, Y, A, Kolotova, D, S, Gordeeva, A, M, Faizullin, D, A, Gusev, Y, A, Maksakova, O, N. 2018. Molecular structure and properties of κ-carrageenan-gelatin gels. Carbohydrate Polymers. 197:66-74

Dinda, S. 2016. Hidrolisis Eucheuma cottonii Menggunakan Enzim dari Vibrio Alginolyticus untuk Menghasilkan Hidrolisat yang Bersifat Prebiotik. Skripsi. IPB. Bogor

Fakhrudin, J, Setyaningsih, D, Rahayuningsih, M. 2014. Bioethanol production from seaweed Eucheuma cottonii by neutralization and detoxification of acidic catalyzed hydrolysate. International Journal of Environmental Science and Development. 5(5):455-458

Hidayah, N, Widyastuti, S, Rosmilawati, Saptono, Handito, D. 2014. Pengaruh konsentrasi isopropil alkohol terhadap sifat mikrobiologis dan organoleptik karaginan Eucheuma cottonii. Agroteksos. 24(3):153-158

Kailasapathy, K, Champagne C, Moore, S. 2011. Synbiotic Yoghurt – A Smart Gut Food. Nova Science Publishers Inc. New York

Kementerian Kelautan dan Perikanan. 2016. Informasi Kelautan dan Perikanan. Dilihat 12 April 2018. <http://statistik.kkp.go.id/sidatik-dev/Publikasi/src/informasikpjanuari2016.pdf>

Knudsen, R, N, Ale, M, T, Ajalloueian, F, Yu, L, Meyer, A, S. 2017. Rheological properties of agar and carrageenan from Ghanaian red seaweeds. Food Hydrocolloids. 63:50-58

Københavns, P. 1978. Carrageenan. Lillekensved. Denmark

Kumalaningsih, S, Wignyanto, Permatasari, V, R, Triyono, A. 2014. Pengaruh jenis mikroorganisme dan pH terhadap kualitas minuman probiotik dari ampas Tahu. Dilihat 12 April 2018. <http://skripsitipftp.staff.ub.ac.id/files/2014/11/2.JURNAL-A.-Triyono.pdf>

Legowo, AM, Kusrahayu, Mulyani, S. 2009. Ilmu dan Teknologi Pengolahan Susu. Universitas Diponegoro. Semarang

Loo, C, C, Slatter, W, L, Powell, R, W. 1950. A study of the cavitation effect in the homogenization of dairy products. Journal of Dairy Science. 33(10):692-702

Machmud, M, N, Fuadi, Z, Fadi, F, Kokarkin, C. 2013. Alternative fiber sources from Gracilaria Sp and Eucheuma Cottonii for Paper-making. Internat. J. Sci. Eng. 6(1):1-10

Meliawati, T. 2015. Karakterisasi Enzim Karagenase dari Isolat Mikroba Laut untuk Hidrolisis Eucheuma cottonii. Skripsi. IPB. Bogor

Meng, F, Zhou, Y, Liu, J, Wu, J, Wang, G, Li, R, Zhang, Y. 2018. Thermal decomposition behaviors and kinetics of carrageenan-poly vinyl alcohol biocomposite film. Carbohydrate Polymers. 201:96-104

Mota, M, J, Lopes, R, P, Sousa, S, Gomes, A, M, Delgadillo, I, Saraiva, J, A. 2018. Lactobacillus reuteri growth and fermentation under high pressure towards the production of 1,3-propanediol. Food Research International. 113:424-432

Mussatto, S, I, Mancilha, I, M. 2007. Nondigestible oligosaccharides : a review. Carbohydrate Polymers. 68(3):587-597

Norberto, A, P, Marmentini, R, P, Carvalho, P, H, Campagnollo, F, B, Takeda, H, H, Alberte, T, M, Rocha, R, S, Cruz, A, G, Alvarenga, V, O, Sant’ana, A, S. 2018. Impact of partial and total replacement of milk by water-soluble soybean extract on fermentation and growth parameters of kefir microorganisms. LWT. 93:491-498

Oliveira, M, E, S, Panyoja, L, Duarte, W, F, Collela, C, F, Valarelli, Schwan, R, F, Dias, D, R. 2011. Fruit wine produced from cagaita (Eugenia dysenterica DC) by both free and immobilised yeast cell fermentation. Food Research International. 44(7):2391-2400

Putri, L, S, E, Sukandar, D. 2008. Konversi pati ganyong (Canna edulis Ker.) menjadi bioetanol melalui hidrolisis asam dan fermentasi. Biodiversitas. 9(2):112-116

Sason, G, Nussinovitch, A. 2018. Characterization of κ-carrageenan gels immersed in ethanol solutions. Food Hydrocolloids. 79:136-144

SNI. 2009. Yoghurt. Dilihat 20 Juli 2018. <https://www.scribd.com/document/354563676/SNI-2981-2009-Yogurt-pdf>

Soccol, C, R, da Costa, E, S, F, Letti, L, A, J, Karp, S, G, Woiciechowski, A, L, Vandenberghe, L, P, S. 2017. Recent developments and innovations in solid state fermentation. Biotechnology Research

and Innovation. 1(1):52-71

Sukhlaaied, W, Riyajan, S. 2013. Synthesis and properties of carrageenan grafted copolymer with poly(vinyl alcohol). Carbohydrate Polymers. 98:677-685

Rahayu, K. 2010. Mikrobiologi Pangan. PAU Pangan dan Gizi. Yogyakarta

Rahim, A, F, Wasoh, H, Zakaria, M, R, Ariff, A, Kapri, R, Ramli, N, Ling, L. 2014. Production of high yield sugars from Kappaphycus alvarezii using combined methods of chemical and enzymatic hydrolysis. Food Hydrocolloids. 42(2):309-315

Rahmawati, D. 2004. Mempelajari Aktivitas Antioksidan dan Antimikroba Ekstrak Antarasa (Litsea cubeba) dan Aplikasinya Sebagai Pengawet Alami Pada Bahan Pangan. Skripsi. IPB. Bogor

Ridho’ah, T. 2016. Karakteristik probiotik Bifidobacterium longum dan Lactobacillus casei pada hidrolisat Eucheuma cottonii. Skripsi. IPB. Bogor

Sason, G, Nussinovitch, A. 2018. Characterization of κ-carrageenan gels immersed in ethanol solutions. Food Hydrocolloids. 79:136-144

Van den Broek, L, A, M, Hinz, S, W, A, Beldman, G, Vincken, J, P, Voragen, A, G, J. Bifidobacterium carbohydrases-their role in breakdown and synthesis of (potential) prebiotics. 2008. Molecular Nutrition Food Research. 52(1):146-163

Van de Velde, F, Knutsen, S, H, Usov, A, I, Romella, H, S, Cerezo, A, S. 2002. 1 H and 13C high resolution NMR spectoscopy of carrageenans: aplication in research and industry. Trends in Food Science & Technology. 13(3):73-92

Winarno, FG. 1996. Teknologi Pengolahan Rumput Laut. Gramedia Pustaka Utama. Jakarta

Webster, D, F, Pond, J, B, Dyson, M, Harvey, W. 1978. The role of cavitation in the in vitro stimulation of protein synthesis in human fibroblasts by ultrasound. Ultrasound in Medicine & Biology. 4(4):343-351

Zainudin, 2012. Teknologi Pengolahan Rumput Laut. Pustaka Sinar Harapan. Jakarta

Zelvi, M, Suryani, A, Setyaningsih, D. 2016. Hidrolisis Eucheuma cottonii dengan enzim k-karagenase dalam menghasilkan gula reduksi untuk produksi bioethanol. Jurnal Teknologi Industri Pertanian. 27(1):33-42

Zhu, B, Ning, L. 2016. Purification and characterization of a new κ-carrageenase from the marine bacterium Vibrio sp. NJ-2. J. Microbiol. Biotechnol. 26(2):255-262

Downloads

Published

2018-08-10

Issue

Section

Articles