POTENSI BAKTERI LAUT SEBAGAI SUMBER ANTIBIOTIK BARU PENGHAMBAT STAPHYLOCCUS AUREUS

Authors

  • Nur Agustin Mardiana Universitas Brawijaya
  • Tutik Murniasih Lembaga Pusat Penelitian Oseanografi
  • Widya Dwi Rukmi Universitas Brawijaya
  • Joni Kusnadi Universitas Brawijaya

DOI:

https://doi.org/10.21776/ub.jtp.2020.021.01.6

Keywords:

16S rRNA, Aktivitas Antibakteri, Bakteri Laut, Saccharomyces aureus

Abstract

ABSTRAK

 

Penemuan akan antibiotik baru yang semakin menurun dan meningkatnya penyakit yang disebabkan oleh Staphylococcus aureus  telah meningkatkan minat terhadap bakteri laut sebagai produsen senyawa antibiotik baru. Tujuan dari penelitian ini adalah mengetahui aktivitas antibakteri dari lima isolat bakteri laut terhadap Staphylococcus aureus  dan mengidentifikasi jenis bakteri laut yang memiliki aktivitas antibakteri tertinggi dengan 16S rRNA. Hasil penelitian menunjukkan dari lima isolat bakteri laut, isolat M1.SP3121015.101.a menunjukkan aktivitas antibakteri tertinggi dengan rerata daya hambat sebesar 10,20 mm. Karakterisasi M1.SP3.121015.101.a dilakukan dengan menggunakan 16S rRNA didapatkan cluster gen pada ± 1500 bp. Berdasarkan sekuens isolat M1.SP3121015.101.a memiliki kemiripan dengan Bacillus tequilensis strain K2.4.2 dengan 100% kesamaan.  Penelitian ini memberikan manfaat yaitu didapatkannya  isolat bakteri laut yang memiliki kemampuan sebagai antibakteri dan dapat digunakan pada penelitian selanjutnya seperti proses isolasi senyawa bioaktif maupun proses optimasi.    

Kata Kunci: 16S rRNA; Aktivitas Antibakteri; Bakteri Laut;  Staphylococcus aureus  

  

ABSTRACT 

 

A decreasing invention on new antibiotic and increasing disease caused by Staphylococcus aureus  has raised increasing interest in marine bacteria as promising producers of new antibiotic agent. The aim of this study is to explore marine bacteria activity to inhibit Staphylococcus aureus . The result showed that among five isolates of marine bacteria, the M1.SP3121015.101.a strain showed the highest antibacterial activity with inhibition zone was 10,20 mm. The characterization ofM1.SP3.121015.101.a was carried out using 16S rRNA, it showed that gene cluster at ±1500 bp. The sequences of M1.SP3121015.101.a  have been closes to Bacillus tequilensis strain K 2.4.2 with 100% similarity. This study provides some information about the isolate of marine bacteria that has the highest antibacterial activity and it can be used in further research such as the process of isolation of bioactive compounds and the optimization process.

Keywords: 16S rRNA; Antibacterial Activity; Marine Bacteria; Staphylococcus aureus  

Author Biography

Nur Agustin Mardiana, Universitas Brawijaya

Department of food science technology

References

Akhmaloka, A. et al. (2006) ‘Ribotyping Identification of Thermophilic Bacterium from Papandayan Crater’, ITB Journal of Engineering Science, 38(1), pp. 1–10. doi: 10.5614/itbj.eng.sci.2006.38.1.1.

Andryukov, B., Mikhailov, V. and Besednova, N. (2019) ‘The biotechnological potential of secondary metabolites from marine bacteria’, Journal of Marine Science and Engineering, 7(6), pp. 1–16. doi: 10.3390/jmse7060176.

Awad, G. E. A. et al. (2015) ‘Enhanced production of thermostable lipase from Bacillus cereus ASSCRC-P1 in waste frying oil based medium using statistical experimental design’, Journal of Applied Pharmaceutical Science, 5(9), pp. 007–015. doi: 10.7324/JAPS.2015.50902.

Chen, C. J. and Huang, Y. C. (2014) ‘New epidemiology of Staphylococcus aureus infection in Asia. (Themed Section: New epidemiology of Staphylococcus aureus infections.)’, Clinical Microbiology and Infection, 20, pp. 605–623.

Das, S., Lyla, P. S. and Khan, S. A. (2006) ‘Marine microbial diversity and ecology: Importance and future perspectives’, Current Science, 90(10), pp. 1325–1335.

Debbab, A. et al. (2012) ‘New anthracene derivatives - Structure elucidation and antimicrobial activity’, European Journal of Organic Chemistry, (7), pp. 1351–1359. doi: 10.1002/ejoc.201101442.

Gatson, J. W. et al. (2006) ‘Bacillus tequilensis sp. nov., isolated from a 2000-year-old Mexican shaft-tomb, is closely related to Bacillus subtilis’, International Journal of Systematic and Evolutionary Microbiology, 56(7), pp. 1475–1484. doi: 10.1099/ijs.0.63946-0.

Hudzicki, J. (2012) ‘Kirby-Bauer Disk Diffusion Susceptibility Test Protocol Author Information’, American Society For Microbiology, (December 2009), pp. 1–13. Available at: https://www.asm.org/Protocols/Kirby-Bauer-Disk-Diffusion-Susceptibility-Test-Pro.

Indraningrat, A. A. G., Smidt, H. and Sipkema, D. (2016) ‘Bioprospecting sponge-associated microbes for antimicrobial compounds’, Marine Drugs, 14(5), pp. 1–66. doi: 10.3390/md14050087.

Irmawati. (2013). Perubahan Keragaman Genetik Ikan Kerapu Tikus (Cromileptes altivelis) Generasi Pertama pada Stok Hatchery. IPB. Bogor. https://repository.ipb.ac.id /handle/123456789/6996.

Judianti, O. W. D. et al. (2014) ‘Aktivitas Antibakteri Isolat Bakteri yang Berasosiasi dengan Spons Demospongiae dari Pantai Paciran Lamongan’, 2(2), pp. 49–53.

Kasanah, N. and Hamann, M. T. (2004) ‘Development of antibiotics and the future of marine microorganisms to stem the tide of antibiotic resistance.’, Current opinion in investigational drugs (London, England : 2000), 5(8), pp. 827–37. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15600239%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4969015.

Kasitowati, R. D. et al. (2019) ‘Antifungal activity of marine sponges (Class Demospongiae) collected from Biak, Indonesia’, IOP Conference Series: Earth and Environmental Science, 236(1), pp. 0–7. doi: 10.1088/1755-1315/236/1/012102.

Lin, J. et al. (2016) ‘Non-hospital environment contamination with Staphylococcus aureus and methicillin-resistant Staphylococcus aureus: proportion meta-analysis and features of antibiotic resistance and molecular genetics’, Environmental Research, 150, pp. 528–540. doi: 10.1016/j.envres.2016.06.040.

Long, R. and Azam, F. (2001) ‘Antagonistic interactions among marine planktonic bacteria.’, Applied and Environmental Microbiology, 67(11), pp. 4975–4983. doi: 10.1128/AEM.67.11.4975.

Lucena-Aguilar, G. et al. (2016) ‘DNA Source Selection for Downstream Applications Based on DNA Quality Indicators Analysis’, Biopreservation and Biobanking, 14(4), pp. 264–270. doi: 10.1089/bio.2015.0064.

Ludwig, W. and Klenk, H.-P. (2012) ‘Overview: A Phylogenetic Backbone and Taxonomic Framework for Procaryotic Systematics’, Bergey’s Manual® of Systematic Bacteriology, pp. 49–65. doi: 10.1007/978-0-387-21609-6_8.

Madigan, M. T., Martinko, J. M. and Parker, J. (2015) ‘Brock biology of micro-organisms’, (January 2010), p. 1041.

Mondol, M. A. M., Shin, H. J. and Islam, M. T. (2013) ‘Diversity of secondary metabolites from marine Bacillus species: Chemistry and biological activity’, Marine Drugs, 11(8), pp. 2846–2872. doi: 10.3390/md11082846.

Pedrós-Alió, C. (2006) ‘Marine microbial diversity: can it be determined?’, Trends in Microbiology, 14(6), pp. 257–263. doi: 10.1016/j.tim.2006.04.007.

Prijatmoko, D., Syafira, N. L. and Lestari, P. E. (2018) ‘Antibacterial activity of essential oil extracts from Curcuma xanthorrhiza roxb. rhizomes against bacteria causing pulp necrosis’, Journal of Dentomaxillofacial Science, 3(3), p. 144. doi: 10.15562/jdmfs.v3i3.763.

Rey, M. W. et al. (2004) ‘Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species.’, Genome biology, 5(10). doi: 10.1186/gb-2004-5-10-r77.

Santos, O. C. S. et al. (2010) ‘Isolation, characterization and phylogeny of sponge-associated bacteria with antimicrobial activities from Brazil’, Research in Microbiology. Elsevier Masson SAS, 161(7), pp. 604–612. doi: 10.1016/j.resmic.2010.05.013.

Schaumburg, F. et al. (2014) ‘New epidemiology of Staphylococcus aureus infection in Africa’, Clinical Microbiology and Infection. European Society of Clinical Infectious Diseases, 20(7), pp. 589–596. doi: 10.1111/1469-0691.12690

Schinke, C. et al. (2017) ‘Antibacterial Compounds from Marine Bacteria, 2010-2015’, Journal of Natural Products, 80(4), pp. 1215–1228. doi: 10.1021/acs.jnatprod.6b00235.

Tapilatu, Y. H. (2016) ‘Marine Bacteria from Eastern Indonesia Waters and Their Potential Use in Biotechnology’, Omni-Akuatika, 12(1). doi: 10.20884/1.oa.2016.12.1.32

Taylor, M. W. et al. (2007) ‘Sponge-Associated Microorganisms: Evolution, Ecology, and Biotechnological Potential’, Microbiology and Molecular Biology Reviews, 71(2), pp. 295–347. doi: 10.1128/mmbr.00040-06.

Trinh, P. T. H. et al. (2016) ‘Antibacterial activity of marine bacteria associated with sponges from Phu Quoc island in Vietnam’, Vietnam Journal of Biotechnology, 14(1), pp. 181–190. doi: 10.15625/1811-4989/14/1/9308.

Tyc, O. et al. (2017) ‘The Ecological Role of Volatile and Soluble Secondary Metabolites Produced by Soil Bacteria’, Trends in Microbiology. Elsevier Ltd, 25(4), pp. 280–292. doi: 10.1016/j.tim.2016.12.002.

Usman, T. et al. (2014) ‘Comparison of methods for high quantity and quality genomic DNA extraction from raw cow milk’, Genetics and Molecular Research, 13(2), pp. 3319–3328. doi: 10.4238/2014.April.29.10.

Xu, D. and Côté, J. C. (2003) ‘Phylogenetic relationships between Bacillus species and related genera inferred from comparison of 3′ end 16S rDNA and 5′ end 16S-23S ITS nucleotide sequences’, International Journal of Systematic and Evolutionary Microbiology, 53(3), pp. 695–704. doi: 10.1099/ijs.0.02346-0.

Downloads

Published

2020-04-06

Issue

Section

Articles