POTENSI PANAS GAS BUANG DAN LAJU PASOKAN BAHAN BAKAR ALAT PENGERING KOPI TANDEM HIBRID PANAS MATAHARI-BIOMASSA

Authors

  • Yuwana Yuwana Universitas Bengkulu
  • Bosman Sidebang Universitas Bengkulu

DOI:

https://doi.org/10.21776/ub.jtp.2024.025.01.2

Keywords:

Entalpi, Kecepatan, Panas Kumulatif, Pasokan Bahan Bakar, Suhu

Abstract

Alat pengering tandem hibrid panas matahari-biomassa dikembangkan dari alat pengering sebelumnya dengan memanfaatkan gas buang yang dihasilkan sebagai sumber panas sehingga kapasitasnya meningkat dari sekitar 2 ton menjadi 4 ton buah kopi. Tujuan penelitian ini menentukan potensi panas gas buang dari tungku dan pengaruh laju pasokan bahan bakar pada suhu maksimum ruang pengering belakang. Dioperasikan dengan pasokan bahan bakar LPG 1,4–4,35 kg/jam selama 2 jam, suhu udara di kedua ruang pengering tetap lebih tinggi dibandingkan suhu udara luar dari 7,3 jam hingga 14 jam, sementara ruang pengering depan mempunyai suhu udara 36,5–50,1°C dengan kecepatan maksimum antara 0,8–1,4 m/s dan ruang pengering belakang mempunyai suhu 39–108°C dengan kecepatan maksimum 1,15–1,6 m/s. Entalpi udara pengering di ruang pengering belakang secara konsisten lebih tinggi dari ruang pengering depan. Dengan peningkatan pasokan LPG, persentase panas kumulatif yang didistribusikan di ruang pengering belakang meningkat dari 19% menjadi 32% sedangkan potensi panasnya meningkat dari 51,8% menjadi 58,5% dari nilai kalor LPG yang dipasok dan didistribusikan 42,5% menjadi 47,7% di ruang pengering depan dan 4,8% sampai 16% di ruang pengering belakang. Dioperasikan dengan suplai bahan bakar kayu bakar 2,5–15 kg, suhu udara pengeringan maksimum dan lamanya api bertahan membara (waktu pembakaran) meningkat secara linier dengan besarnya suplai kayu bakar. Suplai kayu bakar sebanyak 3,54–12,69 kg ke dalam tungku menghasilkan suhu udara ruang pengering belakang setara dengan berbagai suhu udara alat pengering kopi baik non mekanis maupun mekanis.

Author Biographies

Yuwana Yuwana, Universitas Bengkulu

Jurusan Teknologi Pertanian

Bosman Sidebang, Universitas Bengkulu

Jurusan Teknologi Pertanian

References

Abdullah, Y, -M., Aziz, G, -S. 2020. The Distribution of Solar Radiation and Solar Energy Intensity, and Top Locations for Constructing Solar Energy Stations in Iraq. IJASEIT. 10(6), 2465-2471.

Abuşka, -M., Şevik, -S. 2017. Energy, exergy, economic and environmental (4E) analyses of flat-plate and V-groove solar air collectors based on aluminium and copper. Solar Energy. 158, 259–277.

Acar, -B., Dağdeviren, -A., Özkaymak, -M. 2020. Design of Hazelnut Drying System Supported By Solar Energy, Investigation of Drying Performance and Determination of Proper Drying Model. IJRER. 5(2), 570-577.

Agustina, -R., Syah, -H., Moulana, -R. 2016. Characteristic of coffee beans box dryer with heat source of coffee husk furnace and a solar collector. Agrotechno. 1(1), 20-27.

Al-Damook, -M., Obaid, Z, A, -H., Al Qubeissi, -M., Dixon-Hardy, -D., Cottom, -J., Heggs, P, -J. 2019. CFD modeling and performance evaluation of multipass solar air heaters. Numer. Heat Transf. Part A Appl. 76(6), 438–464.

Ali, -A., Iqbal, -T., Cheema, M, J, -M., Afzal, -A., Yasin, -M., Zia ul Haq, Malik, A, -M., Khan, K, -S. 2021. Development of a Low-Cost Biomass Furnace for Greenhouse Heating. Sustainability. 13(9), 1-16. https://doi.org/10.3390/su13095152, accessed March 7th 2022.

Almuhanna, E, -A. 2012. Utilization of a solar greenhouse as a solar dryer for drying dates under the climatic conditions of the Eastern Province of Saudi Arabia. J. Agric. Sci. 4(3), 237-246.

Anuwar, F, -H., Omar, A, -M. 2016. Future Solar Irradiance Prediction using Least Square Support Vector Machine. IJASEIT. 6(4), 520-523.

Arun, -S., Ayyappan, -S., Sreenarayanan, V, -V. 2014. Experimental studies on drying characteristics of tomato in a solar tunnel greenhouse dryer. IJRTE. 3(4), 32-37.

Arya, -F., Hyde, -T., Henshall, -P., Eames, -P., Moss, -R., Shire, -S., Uhomoibhi, -J. 2021. Fabrication analysis of flat vacuum enclosures for solar collectors sealed with Cerasolzer 217. Solar Energy. 220:635-649.

Azimi, -A., Tavakoli, -T., Beheshti, H, -K., Rahimia, -A. 2012. Experimental study on eggplant drying by an indirect solar dryer and open sun drying. Iranica J. Energy & Environment. 3(4), 348-354.

Aziz, -A., Ur Rehman, S, -U., Rehman, S, -U. 2016. Exergy Analysis of Solar Cabinet Dryer and Evaluate the Performance Enhancement of Solar Cabinet Dryer by Addition of Solar Reflectors. IJRER. 6(4), 1393-1402.

Banout, -J., Ehl, -P. 2010. Using a double-pass solar drier for drying of bamboo shoots. J. Agr. & Rural Dev. Trop. Subtrop. 111(2), 119-127.

Boughali, -S., Benmousa, -H., Bouchekima, -B., Mennouche, -D., Bouquettaia, -H., Bechki, -D. 2009. Crop drying by indirect active hybrid solar-electrical dryer in the eastern Algerian Septentrional Sahara. Solar Energy. 83(12):2223-2232.

Cabral, -D., Gomes, -J., Hayati, -A., Karlsson, -B. 2021. Experimental investigation of a CPVT collector coupled with a wedge PVT receiver. Solar Energy. 215, 335-345.

Chavan, B, -R., Yakupitiyage, -A., Kumar, -S., Sutar, V, -B. 2015. Effect of drying in Solar-Biomass hybrid Tunnel dryer on Biochemical, Microbial and Sensory properties of Mackerel. Intl. J. Food. Ferment. Technol. 5(2), 201-211.

Dhanuskodi, -S., Sukumaran, -R.,Wilson, -H. 2013. Investigation of solar biomass hybrid system for drying cashew. Int. J. Chem. Tech. Res. 5(2), 1076-1082.

Dhanushkodi, -S., Wilson, V, -H., Sudhakar, -K. 2015. Simulation of solar biomass hybrid dryer for drying cashew kernel. Adv. Appl. Sci. Res. 6(8), 148-154

Ferreira, A, -G., Charbel, A, L, -T., Pires, R, -L., Silva, J, -G., Maia, C, -B. 2007. Experimental analysis of a hybrid dryer. Eng. Ter. 6, 3-7.

Gachen, -A., Hirpersa, -Z., Woyessa, L, -N. 2020. Design and construction of indirect solar coffee dryer. IJITEE. 9(4), 2943-2956.

Grigoriev, -V., Milidonis, -K., Blanco, -M. 2020. Sun tracking by heliostats with arbitrary orientation of primary and secondary axes. Solar Energy. 207, 1384-1389.

Gunasekaran, -K., Shanmugam, -V., Suresh, -P. 2012. Modeling and analytical experimental study of hybrid solar dryer integrated with biomass dryer for drying coleus forskohlii stems. IPSSIT. 28, 28-32.

Jarvela, -M., Lappalainen, -K., Valkealahti, -S., 2020. Characteristics of the cloud enhancement phenomenon and PV power plants. Solar Energy. 196, 137-145.

Kementrian Pertanian R.I. 2012. Lampiran Peraturan Menteri Pertainan Nomor 52/Permentan/OT.140/9/2012. Pedoman penanganan pasca panen kopi.

Kishk, S, -S., El-Gamal, R, -A., El Masry, G, -M. 2019. Effectiveness of recyclable aluminum cans in fabricating an efficient solar collector for drying agricultural products. Renew. Energy. 33, 307–316.

Kusmiyati., Fudholi, -A. 2021. Solar-Assisted Microwave Convective Dryer for Coffee Cherries. IJRER. 11(1), 407-415.

Lorenz, -E., Guthke, -P., Dittmann, -A., Holland, -N., Herzberg, -W., Karalus, -S., Muller, -B., Braun, -C., Heydenreich, -W., Saint-Drenan,-Y. 2022. High resolution measurement network of global horizontal and tilted solar irradiance in southern Germany with a new quality control scheme. Solar Energy. 231, 593-606.

Maia, C, -B., Ferreira, A, -G., Caberas-Gomez, -L., Hanriot, S, -M., Martin, T, -O. 2012. Simulation of the airflow inside a hybrid dryer. IJRRAS. 10(3), 382-389.

Matsunobu, L, -M., Pedro, H, T, -C., Coimbra, C, F, -M. 2021. Cloud detection using convolutional neural networks on remote sensing images. Solar Energy. 230, 1020-1032

Montes, M, -J., Linares, J, -I., Barbero, -R., Rovira, -A. 2020. Proposal of a new design of source heat exchanger for the technical feasibility of solar thermal plants coupled to supercritical power cycles. Solar Energy. 211, 1027-1041.

Mortezapour, -H., Ghobadian, -B., Khoshtagaza, M, -H., Minaei, -S. 2014. Drying kinetics and quality characteristics of saffron dried with a heat pump assisted hybrid photovoltaic-thermal solar dryer. J.Agr.Sci. Tech. 16, 33-45.

Munir, -A., Sultan, -U., Iqbal, -M. 2013. Development and performance evaluation of a locally fabricated portable solar tunnel dryer for drying of fruits, vegetables and medicinal plants. Pak. J. Agri. Sci. 50(3), 493-498.

Munkhammar, -J., Meer, D, V, -D., Widen, -J. 2019. Probabilistic forecasting of high-resolution clear-sky index time-series using a Markov-chain mixture distribution model. Solar Energy. 184, 688-695.

Murali, -G., Sundari, A, T, -M., Raviteja, -S., Chanukyachakravarthi, -S., Tejpraneeth, M. 2020. Experimental study of thermal performance of solar aluminium cane air heater with and without fins. Mater. Today Proc. 21, 223–230.

Nandwani, S, -S. 2011. Design construction and study of direct indirect natural circulation solar dryer in Costa Rica. ISIESCO Sci. Tech. Vision. 7(11), 43-47.

Ndirangu, S, -N., Ronoh, E, -K., Kanali, C, -L., Mutwiwaand, U, -N., Kituu, G, -M. 2020. Design and performance evaluation of a solar-biomass greenhouse dryer for drying of selected crops in western Kenya. Agricultural Engineering International. CIGR Journal. 22(3), 219-229.

Nguyen, H, -B., Bui, T, -A. 2016. Developing The Solar Tracking System for Trough Solar Concentrator. IJASEIT. 6(1), 58-60.

Nguyen, H, -B., Nguyen, -H., Ha, V, -N., Duong, C, -T. 2013. A Study on a Model of Anchovy Solar. IJASEIT. 3(3), 5-8.

Olokor, J, -O., Omojowo, F, -M. 2009. Adaptation and improvement of a simple solar tent dryer to enhance fish drying. Nature and Science. 7(10), 18-24.

Osei, -M., Staveland, -O., McGowan, -S., Unger, J, -B., Christler, -N., Weeman, -M., Strutz, M, -E., Walker, -M., Maun, M, -B., Dunning, N, -C., Bekheit, M, -M., Abraham, J, C, -P., Cox, -L., Gius, -G., Hansel, -O., Amoafo, E, -O., Hugo, -N., Schwartz, -P. 2021. Phase change thermal storage: Cooking with more power and versatility. Solar Energy, 220. 1065-1073.

Panchal, -S., Solanki, S, -K., Yadav, -S., Tilkar, A, -K., Nagaich, R. 2013. Design, construction and Testing of solar dryer with roughened surface solar air heater. Int. J. Innov. Res. Eng. & Sci. 7(2), 7-17.

Parikh, -D., Agrawal, G, -D. 2011. Solar Drying In Hot and Dry Climate of Jaipur, India. IJRER. 1(4), 224-231.

Phadke, P, -C., Walke, P, -V., Kriplani, V, -M. 2015. A review on indirect solar dryers. ARPN J. Eng. Appl. Sci. 10(8), 3360-3371.

Prakash, T, -B., Satyanayarana, -S. 2014. Performance analysis of solar drying system for Guntur Chili. IJLTET. 4(2), 283-298.

Qin, -Y., Huang, -J., McVicar, T, -R., West, -S., Khan, -M., Steven, A, D, -L. 2021. Estimating surface solar irradiance from geostationary Himawari-8 over Australia: A physics-based method with calibration. Solar Energy. 220, 119-129.

Quitiaquez, -W., Estupinan-Campos, -J., Nieto-Londono, -C., Isaza-Roldan, C, -A. Quitiaquez, P. and Toapanta-Ramos, F., 2021. CFD Analysis of Heat Transfer Enhancement in a Flat-Plate Solar Collector with Different Geometric Variations in the Superficial Section. IJASEIT. 11(5), 2039-2045.

Rasmussen, -C., Frolke, -L., Bacher, -P., Madsen, -H., Rode, C. 2020. Semi-parametric modelling of sun position dependent solar gain using B-splines in grey-box models. Solar Energy. 195, 1384-1389.

Reyes, -A., Cubillos, -F., Mahn, -A., Vasques, J. 2014. Dehydration of agro products in a hybrid solar dryer controlled through a fuzzy logic system. Int. J. Mod. Nonlinear Theory and Appl. 3, 66-70.

Rodriguez, E, -C., Fiueroa, I, -P., Mercado, C, A, -R. 2013. Feasibility analysis of drying process habanero chili using a hybrid-solar-fluidized bed dryer in Yucatan Mexico. J. Energy Power Eng. 7, 1898-1908.

Sajith, K, -G., Muraleedharan, -C. 2013. A study on drying of amla using a hybrid dryer. IJIRSET. 2(1), 794-799.

Sajith, K, -G., Muraleedharan, -C. 2014. Economic analysis of hybrid photo voltaic/thermal solar dryer for drying amla. IJERT. 3(8), 907-910.

Saravanan, -D., Wilson, V, -H., Kumarasamy, S. 2014. Design and thermal performace of the solar biomass hybrid dryer for cashew drying. Mech. Eng. 12, 277-288.

Sontakke, M, -S., Salve, S, -P. 2015. Solar drying technologies: A review. IRJES. 4(4), 29-35.

Suherman, -S., Widuri, -H., Patricia, -S., Susanto, E, -E., Sutrisna, R, -J. 2020. Energy analysis of a hybrid solar dryer for drying coffee beans. Int. Journal of Renewable Energy Development. 9(1), 131-139.

Sulaiman, -F., Abdullah, -N., Aliasak, Z. 2013. Solar drying system for drying empty bunches. J. Phys. Sci. 24(1), 75-93.

Syah, -H., Agustina, -R., Moulana, -R. 2016. Designing of box type solar dryer for coffee beans. Rona Teknik Pertanian. 9(1), 25-39.

Thanaraj, -T., Dharmasena, D, A, -N., Samarajeewa, -U. 2004. Development of rotary solar hybrid dryer for small scale copra processing. Trop. Agr. Res. 16, 305-315.

Too, Y, C, -S., Kim, -J., Kuruneru, S, T, -W., Stiff, -R., Dawson, -A. 2021. Development of a staged particle heat exchanger for particle thermal energy storage systems. Solar Energy. 220, 111-118.

Tschopp, -D., Jensen, A, -R., Dragsted, -J., Ohnewenin, -P., Furbo, -S. 2022. Measurement and modeling of diffuse irradiance masking on tilted planes for solar engineering applications. Solar Energy. 231, 365-378.

Urraca, -R., Sanz-Garcia, -A., Sanz-Garcia, -I. 2020. BQC: A free web service to quality control solar irradiance measurements across Europe. Solar Energy. 211, 1-10.

Wang, -Y., Millstein, -D., Mills, A, -D., Jeong, -S., Ancell, -A. 2022. The cost of day-ahead solar forecasting errors in the United States. Solar Energy. 231, 846-856.

Widyotomo, -S. 2014. Performance of big scale transparent structure for coffee drying processing. Pelita Perkebunan. 30(3), 240-257.

Yassen, T, -A., Al-Kayiem, H, -H., K. Habib, -K. 2014. Evaluation of hybrid solar – biomass dryer with no load. MATEC Web of Conferences, 13, ICPER 2014 - 4th International Conference on Production, Energy and Reliability. https://doi.org/10.1051/matecconf/20141306007, accessed February 18th 2022.

Yuwana, -Y., Sidebang, -B. 2017. Performative Improvement of Solar-Biomass Hybrid Dryer for Fish Drying. IJASEIT. 7(6), 2251-2257.

Downloads

Published

2024-04-28

Issue

Section

Articles