Fenol, Flavonoid, Konsentrasi Hambat Minimum, Tanin


ABSTRAK Penelitian ini bertujuan untuk mengetahui pengaruh suhu dan waktu ekstraksi sarang semut (Myrmecodia pendans) dengan Microwave Assisted Extraction (MAE) terhadap rendemen, total fenol, total flavonoid, total tanin dan aktivitas antibakteri ekstrak sarang semut. Selanjutnya ekstrak sarang semut sebagai anti bakteri diaplikasikan pada ikan kakap merah (Lutjanus sanguineus). Rancangan percobaan yang digunakan yaitu Rancangan Acak Lengkap, dengan 2 faktor, yaitu suhu ekstraksi (50, 60 dan 70°C) dan lama waktu ektraksi (10, 20 dan 30 menit). Hasil penelitian memperoleh kondisi terbaik untuk ekstraksi sarang semut adalah suhu 70°C dan lama waktu 20 menit. Ekstrak tersebut memiliki karakteristik sebagai berikut: rendemen 7,83%, total fenol 150,33 mg GAE/g, total flavonoid 56,12 mg QE/g, dan total tanin 20,42 mg TAE/g. Nilai konsentrasi hambat minimum (KHM) ekstrak sarang semut pada Escherichia coli 0,5 mg/ml, Listeria monocytogenes 0,1 mg/ml dan Vibrio parahaemolyticus 0,5 mg/ml. Selanjutnya ekstrak diaplikasikan sebagai bahan perendaman ikan kakap yang telah dikontaminasi dengan Listeria monocytogenes. Ikan yang direndam dengan ekstrak sarang semut dan disimpan pada 4°C dan -8°C mempunyai jumlah Listeria monocytogenes yang lebih rendah dibanding dengan ikan kakap tanpa perendaman.ABSTRACT This study aims to determine the effect of temperature and time of Microwave Assisted Extraction (MAE) of anthill (Myrmecodia pendans) to the yield, total phenol, total flavonoids, total tannins and it's antibacterial activity of extract against Escherichia coli, Listeria monocytogenes and Vibrio parahaemolyticus.. Anthill extract as anti-bacterial was applied to the red snaper ((Lutjanus sanguineus). The design experient used was completely randomized design, with two factors, temperature of extraction (50, 60 and 70 °C) and time of extraction (10, 20 and 30 min). The best condition extraction was obtained at temperature 70°C and time of 20 min, resulting anthill extract with characteristic as follows: a yield of 7.83%, total phenol 150.33 mg GAE / g, total flavonoids 56.12 mg QE / g, total tannins 20.42 TAE mg / g. Minimum concentration inhibition (MIC) on Escherichia coli, Listeria monocytogenes and Vibrio parahaemolyticus were 0.5, 0.1 and 0.5 mg / ml, respectively. Furthermore, extract was applied to soaking (0.1%) red snapper that has been inoculated with Listeria monocytogenes and kept at -8 and 4 °C. The inoculated red snapper contained a lower number of Listeria monocytogenes than un-soaked red snapper.


Situmeang, B., Kurnia, D., and Sumiarsa, D., 2015. Pentacyclic Triterpenes From Sarang Semut Tuber (Myrmecodia pendans) and Their Antibacterial Activity Test Against Escherichia coli.. Universitas Padjajaran. Bandung.

Efendi, Y.N and Hertiani, T. 2013. Antimicrobial potency of ant-plant extract (Myrmecodia tuberosa Jack) against Candida albicans, Escherichia coli, and Staphylococcus aureus. Trad Med J., 18 (1): 53-5.

Engida, A. M., Kasim, N. S., Tsigie, Y. A., Ismadji, S., Huynh, L. H., and Ju, Y. H., 2013. Extraction, identification and quantitative HPLC analysis of flavonoids from sarang semut (Myrmecodia pendan). Industrial Crops and Products. 41 (1): 392-396

Baghdikian, B., Filly, A., Fabiano-Tixier, A. S., Petitcolas, E., Mabrouki, F., Chemat, F., and Ollivier, É., 2016. Extraction by Solvent Using Microwave and Ultrasound-Assisted Techniques Followed by HPLC Analysis of Harpagoside from Harpagophytum Procumbens and Comparison with Conventional Solvent Extraction Methods. Comptes Rendus Chimie. 19 (6): 692-698.

Mandal, V., Mohan, Y, and Hemalatha, S., 2007. Microwave assisted extraction an innovative and promising extraction tool for medicinal plant research. Pharmacognosy Reviews. 1(1): 7-18.

Li, M. J., You, J. Y., Yao, S., Ding, L., Liu, Z. Y., and Zhang, H. Q., 2004. Microwave-assisted Extraction of Rutin and Quercetin from Flos Sophorae. Chem Res Chin Univ. 20. 703-706.

Lee, K. W., Kim, Y. J., Lee, H. J and Lee, C. Y. 2003. Cocoa Has More Phenolic Phytochemical And Higher Antioxidant Than Teas And Red Wine. J. Agric. Food Chem. 51(25): 249-252.

Atanassova, M., Georgieva S., and Ivancheva K. 2011. Total Phenolic And Total Flavonoid Contents, Antioxidant Capacity And Biological Contaminants In Medicinal Herbs. Journal of the University of Chemical Technology and Metallurgy. 46 (1): 81-88

Malangngi, L., Sangi, M., and Paendong, J., 2012. Penentuan kandungan tanin dan uji aktivitas antioksidan ekstrak biji buah alpukat (Persea americana Mill.). Jurnal Mipa Unsrat Online. 1(1): 5-10.

Doughari, J. H. 2006. Antimicrobial activity of Tamarindus indica Linn. Tropical Journal of Pharmaceutical Research. 5(2): 597-603.

Gonçalves, A. C., Almeida, R. C. C., Alves, M. A. O., and Almeida, P. F., 2005. Quantitative Investigation on the Effects of Chemical Treatments in Reducing Listeria monocytogenes Populations on Chicken Breast Meat. Food control. 16(7): 617-622

Liazid, A., Palma, M., Brigui, J., and Barroso, C. G., 2007. Investigation on phenolic compounds stability during microwave-assisted extraction. Journal of Chromatography A. 1140(1), 29-34.

Junior, M. R. M., Leite, A. V., and Dragano, N. R. V. , 2010. Supercritical fluid extraction and stabilization of phenolic compounds from natural sources–review (supercritical extraction and stabilization of phenolic compounds). Open Chem Eng J, 4, 51-60.

Akbari, Abdurahman, N.H., and Yunus, R.M., Fayasz, F., 2019. Microwave assisted extraction of saponin, phenolic and flavonoid from Trigonella foenum-graecu, seed based on two level factorial. Journal of Applied Research on Medicinal and Aromatic Plants. 14.

Sanjaya, R. E., Tedjo, Y. Y., Kurniawan, A., Ju, Y. H., Ayucitra, A., and Ismadji, S., 2014. Investigation on supercritical CO2 extraction of phenolic-phytochemicals from an epiphytic plant tuber (Myrmecodia pendans). Journal of CO2 Utilization, 6, 26-33.

Shao, P., He, J., Sun, P., and Zhao, P. 2012. Analysis of conditions for microwave-assisted extraction of total water-soluble flavonoids from Perilla Frutescens leaves. Journal of food science and technology, 49(1), 66-73.

Jing, P., and Giusti, M. M., 2007. Effects of Extraction Conditions on Improving the Yield and Quality of an Anthocyaninâ€Rich Purple Corn (Zea mays L.) Color Extract. Journal of food science, 72(7), C363-C368.

Roger,A, J., M. Magro, S. Spagnolo, E. Bonaiuto, D. Baratella, L. Fasolato and F. Vianello. 2018. Antimicrobial and magnetically removable tannic acid nanocarrier: A processing aid for Listeria monocytogenes treatment for food industry applications. Food Chemistry. 26, 430-436.

Vattem, D. A., Lin, Y. T., Labbe, R. G., and Shetty, K., 2004. Phenolic antioxidant mobilization in cranberry pomace by solid-state bioprocessing using food grade fungus Lentinus edodes and effect on antimicrobial activity against select food borne pathogens. Innovative food science & emerging technologies. 5(1), 81-91.

Taguri, T., Tanaka, T., and Kouno, I. 2004. Antimicrobial activity of 10 different plant polyphenols against bacteria causing food-borne disease. Biological and Pharmaceutical Bulletin. 27(12), 1965-1969.

Suwandi, A.C. 2015. Identification of Bioactive Compounds in Water Extract of Sarang Semut (Myrmecodia pendans). National Taiwan University of Science and Technology.http://pc01.lib.ntust. edu.tw/ETD-db/ETDsearch/ view_etd?URN=etd-0122115-153900. Taipei.

Lin, Y. T., Labbe, R. G., Shetty, K. 2004. Inhibition of Listeria monocytogenes in fish and meat systems by use of oregano and cranberry phytochemical synergies. Applied and environmental microbiology. 70(9). 5672-5678.

Dong, G., H ,Liu, X, Yu., X Zhang, G Lu, T Zhou and J, Cao., 2018. Antimicrobial and anti-biofilm activity of tannic acid against Staphylococcus aureus. Nat Prod Res. 32: 2225-2228.

Miladi, H., Chaieb, K., Bakhrouf, A., Elmnasser, N., & Ammar, E., 2008. Freezing effects on survival of Listeria monocytogenes in artificially contaminated cold fresh-salmon. Annals of microbiology, 58(3), 471-476.