DEHUMIDIFIER DRYING OF SEAGRASS SIMPLICIA AT LOW TEMPERATURE FOR ANTIOXIDANT AND PHENOLIC PRESERVATION

Authors

  • Bambang Susilo Universitas Brawijaya
  • Mukhammad Abdul Jabbar Filayati Universitas Brawijaya
  • Mochamad Bagus Hermanto Universitas Brawijaya
  • Retno Damayanti Universitas Brawijaya
  • Adamas Akbar Yurisdanto Universitas Brawijaya
  • Abd. Rohim Universitas Brawijaya

DOI:

https://doi.org/10.21776/ub.jtp.2023.024.01.2

Keywords:

Antioxidant; Dehumidified drying; Relative humidity; Seagrass; Temperature

Abstract

          Syringodium isoetifollium is seagrass a marine plant which is mostly found in Indonesian sea waters. Phenol is a kind of sensitive heat compound which will damage at high temperatures. This research aimed to study the effect of temperature using a dehumidified drying machine on the quantity of phenol content and testing of this antioxidant activity and the evaluation of drying characteristics of seagrasses such as decrease of moisture content, the distribution of temperature drying relative humidity, and energy consumption. In this research, the independent variaable were tempeartures (30 °C, 40 °C, and 50 °C) and the independent variable were the content of phenol and antioxidant activity of the seagrasses. The phenol content of each extract was measured with a microplate reader using a Follin-Ciocalteu reagent. The antioxidant activity was measured with the 1,1-diphenyl-2-picrylhydrazyl (DPPH) method. The result showed that the highest content of phenolic compounds (80.42766 ± 0.409a) and antioxidant activity (88.4185 ± 32.0709a) was found in the dehumidified dryer at a temperature of 40 °C. There were significant differences between temperatures of 30 °C and 50 °C. Dehumidifier drying at 30 °C, 40 °C, and 50 °C required 13 hours, 12 hours, and 7.5 hours to reach the final moisture content of seagrass 18-20% from the initial moisture content of 89.4% ± 0.04% (wb). The total phenol content and antioxidant activity with a temperature treatment of 40 °C dehumidifier drying machine showed the best results compared to temperatures of 30 °C, 50 °C, and oven at 40 °C. Based on the same temperature treatment, dehumidifier drying requires a faster time (12 hours) than oven drying (17 hours). The appropriate temperature and time of drying can produce the optimal total phenol and antioxidant activity.

Author Biographies

Bambang Susilo, Universitas Brawijaya

Department of Agricultural Engineering - Faculty of Agricultural Technology

Mukhammad Abdul Jabbar Filayati, Universitas Brawijaya

Department of Agricultural Engineering - Faculty of Agricultural Technology

Mochamad Bagus Hermanto, Universitas Brawijaya

Department of Agricultural Engineering - Faculty of Agricultural Technology 

Retno Damayanti, Universitas Brawijaya

Department of Agricultural Engineering - Faculty of Agricultural Technology 

Adamas Akbar Yurisdanto, Universitas Brawijaya

Department of Agricultural Engineering - Faculty of Agricultural Technology

Abd. Rohim, Universitas Brawijaya

Doctoral Program of Food Science - Faculty of Agricultural Technology

References

Baehaki, -A., Supriadi, -A., Pratama, M, -C. 2016. Antioxidant activity of methanol extract of Halodule uninervis seagrass from the coast of Lampung, Indonesia. Research Journal of Pharmaceutical, Biological Chemical Sciences, 7(3), 1173-1177. https://www.rjpbcs.com/pdf/2016_7(3)/[143].pdf

Baehaki, -A., Widiastuti, -I., Herpandi, Jannah, -N. 2017. Antioxidant activity of extracts of halodulepinifoliaseagrass from solvents with different polarities. Oriental Journal Of Chemistry. 33(1), 181-185. http://dx.doi.org/10.13005/ojc/330120

Charmongkolpradit, -S., Somboon, -T., Phatchana, -R., Sang-aroon, -W., Tanwanichkul. 2021. Influence of drying temperature on anthocyanin and moisture contents in purple waxy corn kernel using a tunnel dryer. Case Studies in Thermal Engineering. 25, 1-8. https://doi.org/10.1016/j.csite.2021.100886

Farzaneh, -V., Carvalho, -I. 2015. A review of the health benefit potentials of herbal plant infusions and their mechanism of action. Industrial Crops and Products. 65, 247-258. https://doi.org/10.1016/j.indcrop.2014.10.057

Garau, M, -C., Simal, -S., Rossello, -C., Femenia, -A. 2007. Effect of air-drying temperature on physicochemical properties of dietary fibre and antioxidant capacity of orange (Citrus aurantium v. Canoneta) by-products. Food Chemistry. 104(3), 1014-1024. https://doi.org/10.1016/j.foodchem.2007.01.009

Gümüşay, Ö, -A., Borazan, A, -A., Ercal, -N., Demirkol, -O. 2015. Drying effects on the antioxidant properties of tomatoes and ginger. Food Chemistry. 173, 156-162. https://doi.org/10.1016/j.foodchem.2014.09.162

Harborne, A. (1998). Phytochemical Methods A Guide to Modern Techniques of Plant Analysis. Berlin: Springer Dordrecht

Jun, -M., Fu, H, -Y., Hong, -J., Wan, -X., Yang, -C., Ho, -C. 2003. Comparison of antioxidant activities of isoflavones from kudzu root (Pueraria lobata Ohwi). Journal of Food Science. 68(6), 2117-2122. https://doi.org/10.1111/j.1365-2621.2003.tb07029.x

Kamiloglu, -S., Pasli, A, -A., Ozcelik, -B., Capanoglu, -E. 2014. Evaluating the in vitro bioaccessibility of phenolics and antioxidant activity during consumption of dried fruits with nuts. LWT - Food Science and Technology. 56(2), 284-289. https://doi.org/10.1016/j.lwt.2013.11.040

Kim, D, -H., Mahomoodally, M, -F., Sadeer, N, -B., Seok, P, -G., Zengin, -G., Palaniveloo, -K. 2021. The nutritional and bioactive potential of seagrasses: A review. South African Journal of Botany. 137, 216-227. https://doi.org/10.1016/j.sajb.2020.10.018

Li, C, -H., Chen, C, -Y., Yang, T, -F., Li, W, -K., Yan, W, -M. 2020. Experimental study on heat and mass transfer of a multi-stage planar dehumidifier. International Journal of Heat and Mass Transfer. 148, 1-12. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119104

Lim, Y, -Y., Murtijaya, J. 2007. Antioxidant properties of Phyllanthus amarus extracts as affected by different drying methods. LWT - Food Science and Technology. 40(9), 1664-1669. https://doi.org/10.1016/j.lwt.2006.12.013

Luximon-Ramma, -A., Bahorun, -T., Soobrattee, M, -A., Aruoma, -O. 2002. Antioxidant activities of phenolic, proanthocyanidin, and flavonoid components in extracts of Cassia fistula. Journal of Agricultural and Food Chemistry. 50(18), 5042-5047. https://doi.org/10.1021/jf0201172

Misha, -S., Mat, -S., Ruslan, -M., Sopian, -K., Salleh, -E. 2013. Review on the application of a tray dryer system for agricultural products. World Applied Sciences Journal. 22(3), 424-433. https://doi.org/10.5829/idosi.wasj.2013.22.03.343

Mrad, N, -D., Boudhrioua, -N., Kechaou, -N., Courtois, -F., Bonazzi, -C. 2012. Influence of air drying temperature on kinetics, physicochemical properties, total phenolic content and ascorbic acid of pears. Food and Bioproducts Processing. 90(3), 433-441. https://doi.org/10.1016/j.fbp.2011.11.009

Nicoli, -M., Anese, -M., Parpinel, -M. 1999. Influence of processing on the antioxidant properties of fruit and vegetables. Trends in Food Science & Technology. 10(3), 94-100. https://doi.org/10.1016/S0924-2244(99)00023-0

Orphanides, -A., Goulas, -V., Gekas, -V. 2013. Effect of drying method on the phenolic content and antioxidant capacity of spearmint. Czech Journal of Food. 31(5), 509-513. https://www.agriculturejournals.cz/pdfs/cjf/2013/05/12.pdf

Paryono, -M., Dewi, E, -N., Fahmi, A, -S. 2021. Aktivitas antioksidan ekstrak lamun Thalassodendron ciliatum yang dikeringkan dengan metode pengeringan berbeda. Jurnal Ilmu dan Teknologi Perikanan. 3(1), 10-15. https://doi.org/10.14710/jitpi.2021.11406

Rahayuningtyas, -A., Kuala, S, -I. 2016. Pengaruh suhu dan kelembaban udara pada proses pengeringan singkong (Studi kasus: Pengering tipe rak). ETHOS: Jurnal Penelitian dan Pengabdian kepada Masyarakat. 4(1), 99-104. https://ejournal.unisba.ac.id/index.php/ethos/article/view/1663/0

Riehle, -P., Vollmer, -M., Rohn, -S. 2013. Phenolic compounds in Cistus incanus herbal infusions—Antioxidant capacity and thermal stability during the brewing process. Food Research International. 53(2), 891-899. https://doi.org/10.1016/j.foodres.2012.09.020

Salazar-Aranda, -R., Pérez-Lopez, L, -A., Lopez-Arroyo, -J., Alanís-Garza, B, -A. 2011. Antimicrobial and antioxidant activities of plants from northeast of Mexico. Evidence-Based Complementary and Alternative Medicine. 2011, 1-6. https://doi.org/10.1093/ecam/nep127

Santoso, -J., Anwariyah, -S., Rumiantin, R, -O., Putri, A, -P., Ukhty, -N., Yoshie-Stark, -Y. 2012. Phenol content, antioxidant activity and fibers profile of four tropical seagrasses from Indonesia. Journal of Coastal Develpopment. 15(2), 189-196. https://ejournal.undip.ac.id/index.php/coastdev/article/view/3540/3184

Singh, O. 2003. Applied Thermodynamics. New Delhi: New Age International

Susilo, -B., Hermanto, -M., Damayanti, -R., Putra, -A. 2021. The application of a data acquisition system and airflow control system in an air dehumidified drying machine. IOP Conference Series: Earth and Environmental Science. 757(2021), 1-8. https://doi.org/10.1088/1755-1315/757/1/012025

Susilo, -B., Hermanto, -M., Mujahidin, -A., Djoyowasito, -G., Damayanti, -R. 2020. Performance of drying machine with air dehumidifying process for sweet corn seed (Zea mays saccharata). IOP Conference Series: Earth and Environmental Science. 515(2020), 1-6. https://doi.org/10.1088/1755-1315/515/1/012008

Susilo, -B., Rohim, -A., Wahyu, -M. 2022. Serial extraction technique of rich antibacterial compounds in sargassum cristaefolium using different solvents and testing their activity. Current Bioactive Compounds. 18(3), 18-25. https://doi.org/10.2174/1573407217666210910095732

Tilak, J, -C., Adhikari, -S., Devasagayam, -T. 2004. Antioxidant properties of Plumbago zeylanica, an Indian medicinal plant and its active ingredient, plumbagin. Communications in Free Radical Research. 9(4), 219-227. https://doi.org/10.1179/135100004225005976

Vatai, -T., Škerget, -M., Knez, -Ž. 2009. Extraction of phenolic compounds from elder berry and different grape marc varieties using organic solvents and/or supercritical carbon dioxide. Journal of Food Engineering. 90(2), 246-254. https://doi.org/10.1016/j.jfoodeng.2008.06.028

Xu, -Q., Riffat, -S., Zhang, -S. 2019. Review of heat recovery technologies for building applications. Energies. 12(7), 1-22. https://doi.org/10.3390/en12071285

Yuvaraj, -N., Kanmani, -P., Satishkumar, -R., Paari, -A., Pattukumar, -V., Arul, -V. 2012. Seagrass as a potential source of natural antioxidant and anti-inflammatory agents. Pharmaceutical Biology. 50(4), 458-467. https://doi.org/10.3109/13880209.2011.611948

Downloads

Published

2023-04-29

Issue

Section

Articles