IDENTIFIKASI BENTUK BUAH ALPUKAT (Persea americana Mill.) DENGAN ANALISIS CITRA DIGITAL

Authors

  • Ifmalinda Universitas Andalas
  • Andasuryani Universitas Andalas
  • Lii Shaufana Universitas Andalas

DOI:

https://doi.org/10.21776/ub.jtp.2022.023.03.5

Keywords:

Alpukat; Citra Digital; Nilai K; Roundness; Sphericity

Abstract

          Kualitas buah sangat berpengaruh pada tingkat daya tarik konsumen, salah satunya pada bentuk buah. Umumnya proses pengelompokan mutu buah menggunakan pengamatan secara visual. Cara ini kurang efisien dan membutuhkan waktu lama. Metode untuk mengatasi masalah tersebut adalah dengan analisis citra digital, yang merupakan ruang lingkup suatu sistem mengenai teknik mengolah dan menganalisa citra atau gambar dengan meggunakan komputer. Tujuan penelitian ini yaitu mengidentifikasi bentuk fisik dari buah alpukat yang normal dan kurang normal dengan analisis citra digital. Pengelompokkannya sesuai dengan standar mutu I dan II buah alpukat, yaitu normal dan kurang normal. Agar terlihat perbedaannya dilakukan menggunakan beberapa parameter bentuk meliputi roundness, sphericity, dan nilai K. Perhitungan tiga parameter ini dilakukan dalam dua kondisi yaitu perhitungan manual dan analisis citra. Hasil penelitian menunjukkan roundness manual normal diperoleh nilai 0,850 sampai 0,893 dan kurang normal diperoleh nilai 0,851 sampai 0,905. Roundness citra normal diperoleh nilai 0,856 sampai 0,895 dan kurang normal diperoleh nilai 0,856 sampai 0,897. Sphericity manual normal diperoleh nilai 0,810 sampai 0,941 dan kurang normal diperoleh nilai 0,807 sampai 0,953. Sphericity citra normal diperoleh nilai 0,826 sampai 0,945 dan kurang normal diperoleh nilai 0,837 sampai 0,972. Nilai K manual normal diperoleh nilai 1,616 sampai 2,485 dan kurang normal diperoleh nilai 1,843 sampai 2,394. Sedangkan nilai K citra normal diperoleh nilai 0,925 sampai 0,948 dan kurang normal diperoleh nilai 0,923 sampai 0,951. Berdasarkan hasil penelitian disimpulkan bahwa bentuk normal dan kurang normal bisa dibedakan dengan analisis citra melalui bentuk roundness. Namun tidak bisa dibedakan dengan bentuk sphericity dan nilai K.

         Fruit quality greatly affects the level of consumer attractiveness. One of them is the shape of the fruit. Generally, the grouping of fruit quality uses visual observation. This method is less efficient and takes a long time. To overcome this problem is the method of digital image analys, which is the scope of a system regarding techniques for analys and analyzing images or images using a computer. The purpose of this study is to find the physical form of normal and abnormal avocados with digital image analys. Grouping according to normal and less normal quality standards. In order to see the difference, several shape parameters were used are roundness, sphericity, and K value. The calculation of these three parameters was carried out in two conditions, manual calculation and image analys. The results showed that the manual for normal roundness obtained values ​​from 0.850 to 0.893 and less normal values ​​obtained from 0.851 to 0.905. Normal image roundness values ​​obtained from 0.856 to 0.895 and less normal values ​​obtained from 0.856 to 0.897. Normal manual sphericity values ​​obtained from 0.810 to 0.941 and less normal values ​​obtained from 0.807 to 0.953. Normal image sphericity values ​​obtained from 0.826 to 0.945 and less normal values ​​obtained from 0.837 to 0.972. Normal manual K values ​​were obtained from 1,616 to 2,485 and less normal values ​​obtained from 1,843 to 2,394. While the value of K for normal images is obtained from 0.925 to 0.948 and less normal values ​​are obtained from 0.923 to 0.951. Based on the results of Keyword research that normal and less normal shapes can be distinguished by image analys through round shapes. However, it cannot be distinguished by the shape of the sphericity and the value of K

Author Biographies

Ifmalinda, Universitas Andalas

Departemen Teknik Pertanian dan Biosistem, Fakultas Teknologi Pertanian

Andasuryani, Universitas Andalas

Departemen Teknik Pertanian dan Biosistem, Fakultas Teknologi Pertanian

Lii Shaufana, Universitas Andalas

Departemen Teknik Pertanian dan Biosistem, Fakultas Teknologi Pertanian

References

Adinurani, PG. 2022. Statistika Non Parametrik (Aplikasi Bidang Pertanian, Manual, dan SPSS). Deepublish, Sleman

Adubofuor, -J., Akyereko, Y. -G., Batsa, -V., Apeku, O. -D., Amoah, -I., Diako, -C., 2021. Nutrient composition and physical properties of two orange seed varieties. International Journal of Food Science. 2021, 1–11. https://doi.org/10.1155/2021/6415620

Ahmad, -U., Rosyid, M. -A., Mardison., 2022. Abnormal shapes identification of gedong mango using dimensionless shape factors in image processing. IOP Conference Series: Earth and Environmental Science. 1038, 1-9. https://doi.org/10.1088/1755-1315/1038/1/012045

Alonge, A. -F., Adetunji, W. -B., 2011. Properties of coconut (Cocos nucifera L.) relevant to its dehusking. Journal of Agricultural Science and Technology. 1(11), 1089–1094. https://doi.org/10.17265/2161-6256/2011.11a.020

Alshibli, K. -A., Druckrey, A, -M., Al-Raoush, R, -I., Weiskittel, -T., Lavrik, N, -V., 2015. Quantifying morphology of sands using 3D imaging. Journal of Materials in Civil Engineering. 27(10), 1–10. https://doi.org/10.1061/(asce)mt.1943-5533.0001246

Badan Pusat Statistik (BPS), 2019. Statistik Tanaman Buah‐buahan dan Sayuran Tahunan Indonesia 2018. Badan Pusat Statistik (BPS) RI, Jakarta

Barrett, P, -J., 1980. The shape of rock particles, a critical review. Sedimentology. 27, 291–303. https://doi.org/10.1111/j.1365-3091.1980.tb01179.x

Begum, -M., Uddin, M, -S., 2020. Digital image watermarking techniques: A review. Information. 11(2), 1-38. https://doi.org/10.3390/info11020110

Bhahri, -S., Rachmat, 2018. Transformasi citra biner menggunakan metode thresholding dan otsu thresholding. e-jurnal JUSITI (Jurnal Sistem Informasi dan Teknologi Informasi). 7(2), 196–203. https://doi.org/10.36774/jusiti.v7i2.254

Buitrago-Osorio, -J., Tinoco, H, -A., Perdomo-Hurtado, -L., Rincon-Jimenez, -A., Ocampo, -O., Berrio, L, -V., Pineda, M, -F., Lopez-Guzman, -J., 2022. Physical-mechanical characterization of coffee fruits Coffea arabica L. var. Castillo classified by a colorimetry approach. Materialia, 21, 1-11. https://doi.org/10.1016/j.mtla.2022.101330

Fauzi, N, -R., Sisilia, -K., 2020. Analisis perbandingan keputusan pembelian online dan offline customer pada OR-K 689 clothing. Jurnal Menara Ekonomi: Penelitian dan Kajian Ilmu Bidang Ekonomi. 6(2), 34–40. https://doi.org/10.31869/me.v6i2.1812

Hawa, L, -C., Wibisono, -Y., Roliannisa, 2020. Some physical and mechanical properties of fermented Keluwak (Pangium edule Reinw) seed. IOP Conference Series: Earth and Environmental Science. 475, 1-6. https://doi.org/10.1088/1755-1315/475/1/012008

Kemendag, 2017. Export News Indonesia: Indonesian Organic Products. Kementerian Perdagangan RI, Jakarta

Koklu, -M., Kursun, -R., Taspinar, Y. -S., Cinar, -I., 2021. Classification of date fruits into genetic varieties using image analysis. Mathematical Problems in Engineering. 2021, 1–13. https://doi.org/10.1155/2021/4793293

Kusumanto, R. -D., Tompunu, A. -N., 2011. Pengolahan citra digital untuk mendeteksi obyek menggunakan pengolahan warna model normalisasi RGB. Semantik, 1(1), 1–7. https://publikasi.dinus.ac.id/index.php/semantik/article/download/153/116

Kwiatkowski, -J., Zaluski, -D., Stolarski, M. -J., Tworkowski, -J., 2020. The physical properties of fruits and the physiological quality of seeds of selected crambe genotypes. Industrial Crops and Products. 145, 1-9. https://doi.org/10.1016/j.indcrop.2019.111977

Manoppo, C. -N., Yusuf, 2018. Analisis faktor yang mempengaruhi persepsi kelompok wanita terhadap pemanfaatan pekarangan. Buletin Agrosaintek. 4(1), 11–22.

Martín-Gómez, J, -J., Rodríguez-Lorenzo, J. -L., Juan, -A., Tocino, -Á., Janousek, -B., Cervantes, -E., 2022. Seed morphological properties related to taxonomy in Silene L. Species. Taxonomy. 2(3), 298–323. https://doi.org/10.3390/taxonomy2030024

Pesik, P, A, -L., Poekoel, V, -C., Putro, M, -D., 2018. Penilaian mutu cengkih menggunakan citra digital. Jurnal Teknik Elektro dan Komputer. 7(2), 161–166. https://doi.org/10.35793/jtek.7.2.2018.19902

Pusat Karantina Tumbuhan dan Keamanan Hayati. 2015. Pedoman Sertifikasi Fitosanitari Buah Alpukat Indonesia. Badan Karantina Pertanian, Jakarta

Rosyid, M. A. 2018. Identifikasi Bentuk Buah Mangga Gedong dengan Pengolahan Citra. Skripsi. Institut Pertanian Bogor. Bogor

Sadwiyanti, L., Sudarso, D., Budiyanti, T., 2009. Petunjuk Teknis Budidaya Alpukat. Balai Penelitian Tanaman Buah Tropika, Solok

Sari, I. P. 2020. Analisis Mutu Fisik Alpukat (Persea americana L.) dengan Lama Pengangkutan Berbeda. Skripsi. Universitas Islam Negeri Sultan Syarif Kasim Riau. Pekanbaru

Sartika, -E. 2010. Pengolahan data berskala ordinal. Sigma-Mu. 2(1), 60–69. https://doi.org/10.35313/sigmamu.v2i1.809

Shapiro, LG., Stockman, GC. 2001. Computer Vision 1st ed. Prentice Hall, California

Sitkei, -G. (ed.), 1986. 'Physical properties of agricultural materials'. Dalam Sitkei, -G. (ed.). Developments in Agricultural Engineering: Mechanics of Agricultural Materials. Elsevier Science Publisher, Amsterdam https://doi.org/10.1016/B978-0-444-99523-0.50006-4

Wadell, -H., 1932. Volume, shape, and roundness of rock particles. Journal of Geology. 40(5), 443–451. https://doi.org/10.1086/623964

Yuhandri, Ramadhanu, -A., Syahputra, -H., 2022. Pengenalan teknologi pengolahan citra digital (Digital Image Processing) untuk Santri di Rahmatan Lil’alamin. Community Development Journal: Jurnal Pengabdian Masyarakat. 3(2), 1239–1244. https://doi.org/10.31004/cdj.v3i2.5868

Downloads

Published

2022-12-30

Issue

Section

Articles