PENGARUH SUHU TERHADAP DAYA KEMBANG, KELARUTAN, DAN KAPASITAS PENGIKATAN AIR PADA PATI UBI JALAR TERMODIFIKASI ULTRASONIK

Authors

  • Grace Maria Ulfa Universitas Brawijaya
  • Irma Nopriyani Universitas Brawijaya
  • Vivien Fathuroya Universitas Brawijaya
  • Widya Dwi Rukmi Putri Universitas Brawijaya
  • Kiki Fibrianto Universitas Brawijaya
  • Simon Bambang Widjanarko Universitas Brawijaya

DOI:

https://doi.org/10.21776/ub.jtp.2022.023.03.3

Keywords:

Fisikokimia; Modifikasi Pati; Pati, Ubi Jalar; Ultrasonik

Abstract

          Gelombang ultrasonik dapat dimanfaatkan untuk mengubah sifat fisik dan kimia pati ubi jalar. Pati yang telah dimodifikasi menggunakan gelombang ultrasonik dengan rentang suhu 35-60 °C memiliki peningkatan sifat fisik dibandingkan pati ubi jalar alami. Daya kembang, kelarutan, dan kapasitas pengikatan air merupakan beberapa parameter penting yang menentukan sifat fungsional pati modifikasi. Tujuan penelitian ini adalah untuk mengetahui pengaruh suhu terhadap daya kembang, kelarutan, dan kapasitas pengikatan air pati ubi jalar yang telah dimodifikasi. Hasil analisis morfologi pati menunjukan munculnya struktur berpori pada pati ubi jalar termodifikasi, serta adanya perubahan intensitas serapan IR. Selain itu, modifikasi pati ubi jalar menggunakan gelombang ultrasonik mampu meningkatkan daya kembang, kelarutan, dan kapasitas pengikatan air pati hingga titik tertentu. Akhirnya, diketahui suhu 55 °C memberikan hasil terbaik pada respon yang diamati.

          Ultrasonic waves can be used to change the physical and chemical properties of sweet potato starch. Starch that has been modified using ultrasonic waves with a temperature range of 35-60 °C has improved physical properties compared to native sweet potato starch. The swelling power, solubility and water-binding ability are some of the important parameters that determine the functional properties of modified starch. This research objectives to determine the effect of temperature on swelling power, solubility, and water-binding ability of the modified sweet potato starch. The results of the starch morphological analysis showed the appearance of porous structure in the modified sweet potato starch, as well as a change in the intensity of IR absorption. In addition, the modification of sweet potato starch using ultrasonic waves can increase the swelling power, solubility, and water-binding ability of starch to a certain point. Finally, it is known that the temperature of 55 °C gives the best results for the observed responses.

Author Biographies

Irma Nopriyani, Universitas Brawijaya

Departemen Ilmu Pangan dan Bioteknologi, Fakultas Teknologi Pertanian 

Vivien Fathuroya, Universitas Brawijaya

Departemen Ilmu Pangan dan Bioteknologi, Fakultas Teknologi Pertanian

Widya Dwi Rukmi Putri, Universitas Brawijaya

Pusat Senso-Gastronomi Brawijaya, Fakultas Teknologi Pertanian 

Kiki Fibrianto, Universitas Brawijaya

Pusat Senso-Gastronomi Brawijaya, Fakultas Teknologi Pertanian

Simon Bambang Widjanarko, Universitas Brawijaya

Departemen Ilmu Pangan dan Bioteknologi, Fakultas Teknologi Pertanian

References

Adedokun, M, -O., Itiola, O, -A. 2010. Material properties and compaction characteristics of natural and pregelatinized forms of four starches. Carbohydrate Polymers. 79(4), 818–824. https://doi.org/10.1016/j.carbpol.2009.10.009

Atkin, N, -J., Abeysekera, R, -M., Cheng, S, -L., Robards, A, -W. 1998. An experimentally-based predictive model for the separation of amylopectin subunits during starch gelatinization. Carbohydrate Polymers. 36(3), 173–192. https://doi.org/10.1016/S0144-8617(98)00003-4

Bai, -W., Hébraud, -P., Ashokkumar, -M., Hemar, -Y. 2016. Investigation on the pitting of potato starch granules during high frequency ultrasound treatment. Ultrasonics Sonochemistry. 35, 547-555. https://doi.org/10.1016/j.ultsonch.2016.05.022

Bemiller, J, -N., Huber, K, -C. 2015. Physical modification of Food starch functionalities. Annual Review of Food Science and Technology. 6, 19–69. https://doi.org/10.1146/annurev-food-022814-015552

Castanha, -N., Santos, D, -N., Cunha, R, -L., Augusto, P, E, -D. 2018. Properties and possible applications of ozone-modified potato starch. Food Research International. 116, 1192-1201. https://doi.org/10.1016/j.foodres.2018.09.064

Czechowska-biskup, -R., Rokita, -B., Lotfy, -S., Ulanski, -P., Rosiak, J, -M. 2005. Degradation of chitosan and starch by 360-kHz ultrasound. Carbohydrate Polymers. 60(2), 175–184. https://doi.org/10.1016/j.carbpol.2004.12.001

Debet, M, -R., Gidley, M, -J. 2007. Why do gelatinized starch granules not dissolve completely? roles for amylose, protein, and lipid in granule “ghost” integrity. Journal of Agricultural and Food Chemistry. 55(12), 4752–4760. https://doi.org/10.1021/jf070004o

Food and Agriculture Organization of the United Nations (FAOSTAT). 2018. Crops. Dilihat 7 Juni 2020. <http://www.fao.org/faostat/en/#data>

Herceg, I, -L., Jambrak, A, -R., Šubarić, -D., Brnčić, -M., Brnčić, S, -R., Badanjak, -M., Tripalo, -B., Ježek, -D., Novotni, -D., Herceg, -Z. 2010. Texture and pasting properties of ultrasonically treated corn starch. Czech Journal of Food Sciences. 28, 83–93. https://doi.org/10.17221/50/2009-CJFS

Iheagrawa, M, -C. 2013. Isolation, modification and characterization of sweet potato (Ipomea batatas L (lam)) starch. Journal of Food and Process Technology. 4(1), 1-6 https://doi.org/10.4172/2157-7110.1000198

Iida, -Y., Tuziuti, -T., Yasui, -K., Towata, -A., Kozuka, -T. 2008. Control of viscosity in starch and polysaccharide solutions with ultrasound after gelatinization. Innovative Food Science & Emerging Technologies. 9(2), 140–146. https://doi.org/10.1016/j.ifset.2007.03.029

Jambrak, A, -R., Herceg, -Z., Šubarić, -D., Babić, -J., Brnčić, -M., Brnčić, S, -R., Bosiljkov, -T., Cvek, -D., Tripalo, -B., Gelo, -J. 2010. Ultrasound effect on physical properties of corn starch. Carbohydrate Polymers. 79(1), 91–100. https://doi.org/10.1016/j.carbpol.2009.07.051

Kaur, -M., Oberoi, D, P, -S., Sogi, D, -S., Gill, B, -S. 2011. Physicochemical, morphological and pasting properties of acid treated starches from different botanical sources. Journal of Food Science and Technology. 48, 460–465. https://doi.org/10.1007/s13197-010-0126-x

Kim, -C., Lee, -S., Yoo, -B. 2006. Dynamic rheology of rice starch-galactomannan mixtures in the aging process. Starch/Stärke. 58(1), 35–43. https://doi.org/10.1002/star.200500408

Krishnakumar, -T., Sajeev, M, -S. 2018. Effect of ultrasound treatment on physicochemical and functional properties of cassava starch. Int. J. Curr. Microbiol. Appl. Sci. 7(10), 3122–3135. https://doi.org/10.20546/ijcmas.2018.710.362

Liu, -P., Zhang, -B., Shen, -Q., Hu, -X., Li, -W. 2010. Preparation and structure analysis of noncrystalline granular starch preparation and structure analysis of noncrystalline granular starch. International Journal of Food Engineering. 6(4). 1-10 https://doi.org/10.2202/1556-3758.1900

Luo, -Z., Fu, -X., He, -X., Luo, -F., Gao, -Q., Yu, -S. 2008. Effect of ultrasonic treatment on the physicochemical properties of maize starches differing in amylose content. Starch/Stärke. 60(11), 646–653. https://doi.org/10.1002/star.200800014

Manchun, -S., Nunthanid, -J., Limmatvapirat, -S., Sriamornsak, -P. 2012. Effect of ultrasonic treatment on physical properties of tapioca starch. Advanced Materials Research. 506, 294–297. https://doi.org/10.4028/www.scientific.net/AMR.506.294

Mat, -B., Moorthy, S, -N., Mitchell, J, -R., Hill, S, -E., Linfoot, K, -J., Blanshard, J, M, -V. 1992. The effect of low levels antioxidants on the swelling and solubility of sassava starch. Starch/Stärke. 44, 471–475. https://doi.org/10.1002/star.19920441206

Mousia, -Z., Farhat, I, -A., Pearson, -M., Chesters, M, -A., Mitchell, J, -R. 2001. FTIR microspectroscopy study of composition fluctuations in extruded amylopectin–gelatin blends. Biopolymers. 62(4), 208–218. https://doi.org/10.1002/bip.1015

Nakorn, K, -N., Tongdang, -T., Sirivongpaisal, -P. 2009. Crystallinity and rheological properties of pregelatinized rice starches differing in amylose content. Starch/Stärke. 61, 101–108. https://doi.org/10.1002/star.200800008

Noda, -T., Kottearachchi, N, -S., Tsuda, -S., Mori, -M., Hashimoto, -N., Yamauchi, -H. 2007. Starch phosphorus content in potato (Solanum tuberosum L.) cultivars and its effect on other starch properties. Carbohydrate Polymers. 68(4), 793–796. https://doi.org/10.1016/j.carbpol.2006.08.005

Paterson, L, -A., Leics, U, -K., Mat, D, -B., Sandra, -E., Mitchell, J, -R., John, M. -V. 1994. The effect of low levels of sulohite on the swelling and solubility of starches. Starch/Stärke. 46, 288–291. https://doi.org/10.1016/j.carbpol.2006.08.005

Patist, -A., Bates, -D., 2008. Ultrasonic innovations in the food industry: From the laboratory to commercial production. Innovative Food Science & Emerging Technologies. 9(2), 147–154. https://doi.org/10.1016/j.ifset.2007.07.004

Sandhu, K, -S., Singh, -N. 2007. Some properties of corn starches II: Physicochemical, gelatinization, retrogradation, pasting and gel textural properties. Food Chemistry. 101(4), 1499–1507. https://doi.org/10.1016/j.foodchem.2006.01.060

Suryani, R. 2016. Outlook Komoditas Pertanian Sub Sektor Tanaman Pangan-Ubi Jalar. Pusat Data dan Sistem Informasi Pertanian, Kementerian Pertanian, Jakarta.

Sujka, -M., Jamroz, -J. 2013. Ultrasound-treated starch: SEM and TEM imaging, and functional behaviour. Food Hydrocolloids. 31(2), 413–419. https://doi.org/10.1016/j.foodhyd.2012.11.027

Takizawa, F, -F., Oliveira, -G., Konkel, F, -E., Demiate, I, -M. 2004. Characterization of tropical starches modified with potassium permanganate and lactic acid. Brazilian Archives of Biology and Technology. 47(6), 921–931. https://doi.org/10.1590/S1516-89132004000600012

Ulfa, G, -M., Putri, W, D, -R., Fibrianto, -K., Prihatiningtyas, -R., Widjanarko, S, -B. 2020. The influence of temperature in swelling power, solubility, and water binding capacity of pregelatinised sweet potato starch. IOP Conference Series: Earth and Environmental Science. 475, 1-7. https://doi.org/10.1088/1755-1315/475/1/012036

Ulfa, G, -M., Putri, W, D, -R., Widjanarko, S, -B. 2019. The influence of sodium acetate anhydrous in swelling power, solubility, and water binding capacity of acetylated sweet potato starch. AIP Conference Proceedings. 2120(1), 1-7. https://doi.org/10.1063/1.5115697

Wu, -H., Hulbert, G, -J., Mount, J, -R. 2000. Effects of ultrasound on milk homogenization and fermentation with yogurt starter. Innovative Food Science & Emerging Technologies. 1(3), 211–218. https://doi.org/10.1016/S1466-8564(00)00020-5

Zheng, -J., Li, -Q., Hu, -A., Yang, -L., Lu, -J., Zhang, -X., Lin, -Q. 2013. Dual-frequency ultrasound effect on structure and properties of sweet potato starch. Starch/Stärke. 65(8), 621–627. https://doi.org/10.1002/star.201200197

Zhu, -F. 2015. Impact of ultrasound on structure, physicochemical properties, modifications, and applications of starch. 43(1), 1-17. Trends in Food Science & Technology https://doi.org/10.1016/j.tifs.2014.12.008

Zuo, J, -Y., Knoerzer, -K., Mawson, -R., Kentish, -S., Ashokkumar, -M. 2009. The pasting properties of sonicated waxy rice starch suspensions. Ultrasonics Sonochemistry. 16(4), 462–468. https://doi.org/10.1016/j.ultsonch.2009.01.002

Zuo, Y, Y, -J., Hébraud, -P., Hemar, -Y., Ashokkumar, -M. 2012. Quantification of high-power ultrasound induced damage on potato starch granules using light microscopy. Ultrasonics Sonochemistry 19(3), 421–426. https://doi.org/10.1016/j.ultsonch.2011.08.006

Downloads

Published

2022-12-30

Issue

Section

Articles