KINETIKA PENGERINGAN VAKUM DAN KARAKTERISTIK FISIKOKIMIA IRISAN MANGGA MANALAGI (Mangifera Indica L.)

Authors

  • La Choviya Hawa Department of Agricultural Engineering ,Universitas Brawijaya
  • Alfida Alviolita Melindasari Universitas Brawijaya
  • Dimas Firmanda Al Riza Universitas Brawijaya
  • Mohamad Efendi Universitas Brawijaya

DOI:

https://doi.org/10.21776/ub.jtp.2023.024.03.4

Keywords:

Fisikokimia, Mangga Manalagi, Pemodelan Matematika, Pengeringan Vakum

Abstract

Mangga Manalagi memiliki kandungan gizi serta kadar air yang tinggi, sehingga mudah mengalami perubahan fisik yang ditandai dengan adanya reaksi enzimatik. Oleh karena itu, perlu teknologi pascapanen untuk memperpanjang umur simpan. Teknologi pengeringan vakum merupakan salah satu teknologi yang dapat menjaga kualitas hasil pengeringan, yang lebih baik dibandingkan dengan teknologi pengeringan konvensional. Tujuan penelitian ini untuk menentukan kinetika pengeringan dan perubahan fisikokimia selama pengeringan dengan menggunakan teknologi vakum pada irisan mangga Manalagi. Pengeringan dilakukan menggunakan variasi tekanan vakum (200, 300, dan 400 mbar) dan pra-perlakuan (larutan asam sitrat, asam askorbat, dan air lemon yang dikombinasikan dengan larutan kalsium laktat). Terjadi penurunan kadar air seiring lama pengeringan vakum. Laju pengeringan rata-rata dengan rentang 0,07-0,08%bb/menit.  Kinetika pengeringan diprediksi dengan menggunakan tiga model semi empiris dan didapatkan model Midilli sebagai model terbaik berdasarkan uji ketepatan. Berdasarkan ANOVA dua arah menunjukkan bahwa variasi pra-perlakuan dan tekanan memberikan pengaruh nyata terhadap parameter kadar air, total padatan terlarut, kekerasan, dan warna.  Nilai yang didapatkan hingga akhir proses pengeringan secara berturut-turut adalah 19,03-25,16%bb; 21,41-31,24%˚Brix; 9,59-20,82 kgf; L* 44,92-69,99; a* 6,41-12,80; dan b* 27,43-43,17.

 

Author Biographies

Alfida Alviolita Melindasari, Universitas Brawijaya

Departemen Teknik Biosistem, Fakultas Teknologi Pertanian

Dimas Firmanda Al Riza, Universitas Brawijaya

Departemen Teknik Biosistem, Fakultas Teknologi Pertanian

Mohamad Efendi, Universitas Brawijaya

Departemen Teknik Biosistem, Fakultas Teknologi Pertanian

References

Abano, E, -E., Sam-Amoah, L, -K., Owusu, -J., Engmann, F, -N., 2013. Effects of ascorbic acid, salt, lemon juice, and honey on drying kinetics and sensory characteristic of dried mango. Croatian Journal of Food Science and Technology, 5(1), 1-10. https://hrcak.srce.hr/106156

Adepoju, L, -A., Osunde, Z, -D., 2017. Effect of pretreatments and drying methods on some qualities of dried mango (Mangifera Indica) fruit.” Agricultural Engineering International: CIGR Journal 19(1), 187–94. https://cigrjournal.org/index.php/Ejounral/article/view/3877

Alaei, -B., Chayjan, R, -A., 2015. Drying characteristics of pomegranate arils under near infrared-vacuum conditions. Journal of Food Processing and Preservation, 39(5), 469–479. https://doi.org/10.1111/jfpp.12252.

Ampah, -J., Dzisi, K, -A., Addo, -A., Bart-Plange, -A., 2022. Drying kinetics and chemical properties of mango. International Journal of Food Science, 2022, 1-13. https://doi.org/10.1155/2022/6243228.

Argo, B, -D., Sandra., Ubaidillah., 2018. Mathematical modeling on the thin layer drying kinetics of cassava chips in a multipurpose convective-type tray dryer heated by a gas burner. Journal of Mechanical Science and Technology, 32(7), 3427–3435. https://doi.org/10.1007/s12206-018-0646-2.

Ariani, -Y., Bintoro, -N., Karyadi, J, N, -W., 2019. Kinetika perubahan kualitas fisik buah mangga selama pengeringan beku dengan perlakuan pendinginan awal dan ketebalan irisan.” AgriTECH, 39(4), 298-305 https://doi.org/10.22146/agritech.42599.

Chayjan, R, -A., Dibagar, -N., Alaei, -B., 2017. Drying characteristics of zucchini slices under periodic infrared-microwave vacuum conditions. Heat and Mass Transfer 53(12), 3473–3485. https://doi.org/10.1007/s00231-017-2081-9.

Dereje, -B., Abera, -S., 2020. Effect of pretreatments and drying methods on the quality of dried mango (Mangifera Indica L.) Slices. Cogent Food and Agriculture, 6(1), 1-24. https://doi.org/10.1080/23311932.2020.1747961.

Doymaz, -I., 2014. Drying kinetics and rehydration characteristics of convective hot-air dried white button mushroom slices. Journal of Chemistry, 2014, 1-8. https://doi.org/10.1155/2014/453175.

Erbay, -Z., Icier, -F., 2010. A review of thin layer drying of foods: Theory, modeling, and experimental results. Critical Reviews in Food Science and Nutrition, 50(5), 441–464. https://doi.org/10.1080/10408390802437063.

Ertekin, -C., Firat, M, -Z., 2017. A comprehensive review of thin-layer drying models used in agricultural products. Critical Reviews in Food Science and Nutrition, 57(4), 701–717. https://doi.org/10.1080/10408398.2014.910493.

Fan, -K., Zhang, -M., Bhandari, -B., 2019. Osmotic-ultrasound dehydration pretreatment improves moisture adsorption isotherms and water state of microwave-assisted vacuum fried purple-fleshed sweet potato slices. Food and Bioproducts Processing, 115, 154–164. https://doi.org/10.1016/j.fbp.2019.03.011.

Fajarwati, N, -H., Parnanto, N, H, -R., Manuhara, G, -J,. 2017. Pengaruh konsentrasi asam sitrat dan suhu pengeringan terhadap karakteristik fisik, kimia dan sensoris manisan kering labu siam (Sechium Edule Sw.) dengan pemanfaatan pewarna alami dari ekstrak rosela ungu (Hibiscus Sabdariffa L.). Jurnal Teknologi Hasil Pertanian. 10(1), 50-66. https://doi.org/10.20961/jthp.v10i1.17494

Haddarah, -A., Naim, -E., Dankar, -I., Sepulcre, -F., Pujolà, -M., Chkeir, -M., 2021. The effect of borage, ginger and fennel extracts on acrylamide formation in french fries in deep and electric air frying. Food Chemistry, 350, 1-6. https://doi.org/10.1016/j.foodchem.2021.129060.

Hawa, L, -C., Ali, S, -B., Fujii, -S., Yoshimoto, -N., Yamamoto, -S., 2014. Drying rates and desorption isotherms of lemon juice. Japan Journal of Food Engineering 15(2), 105–108. https://doi.org/10.11301/jsfe.15.105.

Hawa, L, -C., Efendi, -M., Habibah, -H., 2023. Vacuum application with water jet technology in drying button mushrooms (Agaricus Bisporus). 11(1), 84–96. https://doi.org/10.13189/fst.2023.110109.

Hawa, L, -C., Ubaidillah., Mardiyani, S, -A., Laily, A, -N., Yosika, N, I, W., Afifah, F, -N., 2021. Drying kinetics of cabya (Piper Retrofractum Vahl) fruit as affected by hot water blanching under indirect forced convection solar dryer. Solar Energy, 214(2020), 588–598. https://doi.org/10.1016/j.solener.2020.12.004.

Ichwan, -M., Dewi, I, -A., Muharom, Z, -S., 2018. Klasifikasi support vector machine (SVM) untuk menentukan tingkatkemanisan mangga berdasarkan fitur warna. MIND Journal, 3(2), 16–23. https://doi.org/10.26760/mindjournal.v3i2.16-23.

Jiang, -N., Liu, -C., Li, -D., and Zhou, -Y., 2015. Effect of blanching on the dielectric properties and microwave vacuum drying behavior of agaricus bisporus slices. Innovative Food Science and Emerging Technologies, 30, 89–97. https://doi.org/10.1016/j.ifset.2015.05.001.

Le, -D., Konsue, -N., 2021. Mass transfer behavior during osmotic dehydration and vacuum impregnation of ‘phulae’ pineapple and the effects on dried fruit quality. Current Research in Nutrition and Food Science, 9(1), 308–319. https://doi.org/10.12944/CRNFSJ.9.1.29.

Lin, -X., Xu, -J, -L., Sun., D, -W., 2019. “Investigation of moisture content uniformity of microwave-vacuum dried mushroom (Agaricus Bisporus) by NIR hyperspectral imaging. LWT, 109, 108–117. https://doi.org/10.1016/j.lwt.2019.03.034.

Macedo, L, -L., Araújo, C, -S., Vimercati, W, -C., Saraiva, S, -H., Teixeira, L, J, -Q., 2021. Influence of yacon syrup concentration and drying air temperature on properties of osmotically pre-dehydrated dried banana. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 57(3), 441–451. https://doi.org/10.1007/s00231-020-02966-y.

Magdalena, A., Waluyo, S., Sugianti, C. 2014. Pengaruh Suhu dan Konsentrasi Larutan Gula terhadap Proses Dehidrasi Osmosis Buah Walu (Curcubita Moschata). Skripsi, Universitas Lampung, Lampung.

Mella, -C., Vega-Gálvez, -A., Uribe, -E., Pasten, -A., Mejias, -N., Quispe-Fuentes, -I., 2022. Impact of vacuum drying on drying characteristics and functional properties of beetroot (Beta Vulgaris). Applied Food Research 2(1), 1-9. https://doi.org/10.26858/jptp.v3i2.5524

Mugodo, -K., Workneh, T, -S., 2021. The kinetics of thin-layer drying and modelling for mango slices and the influence of differing hot-air drying methods on quality. Heliyon, 7(6), 1-15. https://doi.org/10.1016/j.heliyon.2021.e07182.

Nimmanpipug, -N., Therdthai, -N., 2013. Effect of osmotic dehydration time on hot air drying and microwave vacuum drying of papaya. Food and Applied Bioscience Journal, 1(1), 1–10. https://doi.org/10.14456/fabj.2013.1

Norhadi, -N., Akhir, A, -M., Rosli, N, -R., Mulana, -F., 2020. Drying kinetics of mango fruit using tray and oven dryer. Malaysian Journal of Chemical Engineering and Technology, 3(2), 51-59. https://doi.org/10.24191/mjcet.v3i2.10965

Nusa, -I., 2020. Karakteristik teh hijau daun gaharu hasil pengeringan vakum. Agrintech: Jurnal Teknologi Pangan Dan Hasil Pertanian, 3(2), 73–79. https://doi.org/10.30596/agrintech.v3i2.6645

Parikh, D, -M., 2015. Vacuum drying: Basics and application.” Chemical Engineering, 122(4), 48–54. https://www.proquest.com/docview/1672755803/fulltextPDF/3313B1F9145D428APQ/1?accountid=46437&sourcetype=Trade%20Journals

Purwanti, -M., Jamaluddin, -P., Kadirman, -K., 2017. Penguapan air dan penyusutan irisan ubi kayu selama proses pengeringan menggunakan mesin cabinet dryer. Jurnal Pendidikan Teknologi Pertanian, 3(2), 127-136. https://doi.org/10.26858/jptp.v3i2.5524

Ran, -X., Lin, -D., Zheng, -L., Li, -Y., Yang, -H., 2023. Kinetic modelling of the mass and heat transfer of a plant-based fishball alternative during deep-fat frying and air frying and the changes in physicochemical properties. Journal of Food Engineering, 350, 1-14. ttps://doi.org/10.1016/j.jfoodeng.2023.111457.

Rongtong, -B., Suwonsichon, -T., Ritthiruangdej, -P., Kasemsumran, -S., 2018. Determination of water activity, total soluble solids and moisture, sucrose, glucose and fructose contents in osmotically dehydrated papaya using near-infrared spectroscopy. Agriculture and Natural Resources, 52(6), 557–564. https://doi.org/10.1016/j.anres.2018.11.023.

Rozana., Hasbullah, -R., and Muhandri, -T., 2016. Respon suhu pada laju pengeringan dan mutu manisan mangga kering (Mangifera Indica L.). Jurnal Keteknikan Pertanian, 4(1), 59-66. https://doi.org/10.19028/jtep.04.1.%25p

Sarpong, -F., Yu, -X., Zhou, -C., Hongpeng, Y., Uzoejinwa, B, B., Bai, -J., Wu, -B., Ma, H., 2018. Influence of anti-browning agent pretreatment on drying kinetics, enzymes inactivation and other qualities of dried banana (Musa Ssp.) under relative humidity-convective air dryer. Journal of Food Measurement and Characterization 12(2), 1229–1241. https://doi.org/10.1007/s11694-018-9737-0.

Sehrawat, -R., Nema, P, K., and Kaur, B, P., 2018. Quality evaluation and drying characteristics of mango cubes dried using low-pressure superheated steam, vacuum and hot air drying methods. LWT, 92, 548–555. https://doi.org/10.1016/j.lwt.2018.03.012.

Shringi, -V., Kothari, -S., Panwar, N, -L., 2014. Experimental investigation of drying of garlic clove in solar dryer using phase change material as energy storage. Journal of Thermal Analysis and Calorimetry 118(1), 533–539. https://doi.org/10.1007/s10973-014-3991-0.

Sulistyawati, -I., Dekker, -M., Fogliano, -V., Verkerk, -R., 2018. Osmotic dehydration of mango: Effect of vacuum impregnation, high pressure, pectin methylesterase and ripeness on quality. Lwt 98, 179–186. https://doi.org/10.1016/j.lwt.2018.08.032.

Suna, -S., 2019. Effects of Hot air, microwave and vacuum drying on drying characteristics and in vitro bioaccessibility of medlar fruit leather (Pestil). Food Science and Biotechnology, 28(5), 1465–1474. https://doi.org/10.1007/s10068-019-00588-7.

Tarafdar, -A., Jothi, -N., Kaur, B, -P., 2021. “Mathematical and artificial neural network modeling for vacuum drying kinetics of Moringa Olifera leaves followed by determination of energy consumption and mass transfer parameters. Journal of Applied Research on Medicinal and Aromatic Plants, 24(2021), 1-8. https://doi.org/10.1016/j.jarmap.2021.100306.

Wilyanti, -W., Kurniasari, F, -N., Harti, L, -B., 2019. Pengaruh Seduhan Tepung Kulit Mangga Manalagi (Mangifera Indica L.) terhadap Kadar MDA pada Tikus. Jurnal Kedokteran Brawijaya, 30(4), 235–239. https://doi.org/10.21776/ub.jkb.2019.030.04.1.

Yosika, N, I, -W., Hawa, L, -C., Hendrawan, -Y., 2020. Karakteristik pengeringan cabai puyang (Piper Retrofractum Vahl.) menggunakan pengeringan alami (open sun drying). Jurnal Teknologi Pertanian 21(3), 165–174. https://doi.org/10.21776/ub.jtp.2020.021.03.3

Yunita., Mulya., Rahmawati, R., 2015. Pengaruh lama pengeringan terhadap mutu manisan kering buah carica (Carica Candamarcensis). Jurnal Konversi 4(2), 17-28. https://doi.org/10.24853/konversi.4.2.17-28

Downloads

Published

2023-12-31

Issue

Section

Articles