SINTESIS DAN KARAKTERISASI MEMBRAN POLISULFON DAN SELULOSA ASETAT DARI LIMBAH FILTER ROKOK
DOI:
https://doi.org/10.21776/ub.jtp.2024.025.02.3Keywords:
Filter Rokok, Membran, Polisulfon, Selulosa AsetatAbstract
Membran merupakan salah satu teknologi pengolahan air untuk menyaring partikel-partikel dalam air. Polisulfon (PSf) adalah polimer yang umum digunakan untuk membuat membran ultrafiltrasi. Namun, permasalahan utama PSf adalah sifatnya yang hidrofobik sehingga menyebabkan rendahnya permeabilitas serta mempercepat terjadinya pengotoran. Selulosa asetat (CA) adalah material hidrofilik yang dapat menimbulkan hidrofilisitas pada membran PSf. Hampir 90% rokok diproduksi dengan filter yang berasal dari CA. Filter rokok mengandung hingga 97% CA yang dapat digunakan kembali sebagai bahan baku pembuatan membran. Fokus dari penelitian ini adalah melakukan sintesis membran melalui pendekatan metode inversi fasa dengan bahan dasar berupa polimer PSf yang dikombinasikan dengan polimer CA dari limbah filter rokok yang diharapkan dapat meningkatkan sifat hidrofilisitas membran. Variasi PSf dan filter rokok (PSf/CA) yang digunakan pada penelitian adalah 100:0, 75:25, 50:50, dan 25:75. Hasil dari membran dilakukan karakterisasi melalui analisis sudut kontak air, analisis permeabilitas membran, serta analisis gugus senyawa selulosa asetat pada membran. Nilai sudut kontak statis membran berturut-turut adalah 126,754º, 83,291º, 80,223º, 71,929º. Permeabilitas air bersih membran masing-masing adalah 4.145 L/m2.h.bar, 3.125 L/m2.h.bar, 13.145 L/m2.h.bar, dan 7.187 L/m2.h.bar.
References
Abu-Zurayk, -R., Alnairat, -N., Khalaf, -A., Ibrahim, A, -A., Halaweh, -G., 2023. Cellulose acetate membranes: Fouling types and antifouling strategies—a brief review. Processes. 11(2), 1–25. https://doi.org/10.3390/pr11020489
Al-Amoudi, A., 2015. Nanofiltration membrane cleaning characterization Nanofiltration membrane cleaning characterization. Desalination and Water Treatment. 57(1), 1–12. https://doi.org/10.1080/19443994.2014.940640
Al-Gheethi, A, -A., Mohamed, R, M, S, -R., Rahman, M, A, -A., Johari, M, -R., Kassim, A, H, -M., 2015. Treatment of wastewater from car washes using natural coagulation and filtration system. IOP Conference Series: Materials Science and Engineering, pp. 1–7. https://doi.org/10.1088/1757-899X/136/1/012046
Amini, -A., Kim, -Y., Zhang, -J., Boyer, -T., Zhang, -Q., 2015. Environmental and economic sustainability of ion exchange drinking water treatment for organics removal. Journal of Cleaner Production. 104, 413–421. https://doi.org/10.1016/j.jclepro.2015.05.056
Azffri, S, -L., Thong, C, -S., Hoon, L, -L., Ibrahim, M, -F., Schirmer, -M., Gödeke, S, -H., 2023. Evaluation of ground and surface water hydrochemistry for irrigation suitability in Borneo: Insights from Brunei Darussalam. Water. 15(12), 1–19. https://doi.org/10.3390/w15122154
Chan, -M., Ng, -S. 2018. Effect of membrane properties on contact angle effect of membrane properties on contact angle. Proceedings of the 3rd International Conference on Applied Science and Technology, pp. 1–6. https://doi.org/10.1063/1.5055437
Crini, -G., Lichtfouse, -E., 2019. Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters. 17(1), 145–155. https://doi.org/10.1007/s10311-018-0785-9
de Dardel, F., Arden, TV. 2012. 'Ion Exchangers'. Dalam Ullmann, F. (ed.). Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. https://doi.org/10.1002/14356007.a14_393.pub2
de Guzman, M, -R., Andra, C, K, A., Ang, M, B, M, Y., Dizon, G, V, -C., Caparanga, A, -R., Huang, S, -H., Lee, K, -R., 2020. Increased performance and antifouling of mixed-matrix membranes of cellulose acetate with hydrophilic nanoparticles of polydopamine-sulfobetaine methacrylate for oil-water separation. Journal of Membrane Science. 620, 1–45. https://doi.org/10.1016/j.memsci.2020.118881
Dewi, -R., Shamsuddin, -N., Bakar, M, S, -A., Thongratkaew, -S., Faungnawakij, -K., Bilad, M, -R., 2023. Development of tannic acid coated polyvinylidene fluoride membrane for filtration of river water containing high natural organic matter. Sci. 5, 1–15. https://doi.org/10.3390/sci5040042
Diainabo, K, -J., Mthombeni, N, -H., Motsa, M. 2021. Preparation and characterization of hybrids of cellulose acetate membranes blended with polysulfone and embedded with silica for copper(II), iron(II), and zinc(II) removal from contaminated solutions. Journal of Polymers and the Environment. 29(11), 3587–3604. https://doi.org/10.1007/s10924-021-02094-6
Doyan, -A., Leong, C, -L., Bilad, M, -R., Kurnia, K, -A., Susilawati, -S., Prayogi, -S., Narkkun, -T., Faungnawakij, -K., 2021. Cigarette butt waste as material for phase inverted membrane fabrication used for oil/water emulsion separation. Polymers. 13(12). 1–15. https://doi.org/10.3390/polym13121907
Ezugbe, E, -O., Rathilal, -S., 2020. Membrane technologies in wastewater treatment: A review. Membranes. 10(5), 1–28. https://doi.org/10.3390/membranes10050089
Fei, -P., Liao, -L., Cheng, -B., Song, -J., 2017. Quantitative analysis of cellulose acetate with a high degree of substitution by FTIR and its application. Anal. Methods, 9(43), 6194–6201. https://doi.org/10.1039/c7ay02165h
Ferella, -F., De Michelis, -I., Zerbini, -C., Vegliò, -F., 2013. Advanced treatment of industrial wastewater by membrane filtration and ozonization. Desalination. 313, 1–11. https://doi.org/10.1016/j.desal.2012.11.039
Galambos, -I., Molina, J, -M., Jaray, -P., Vatai, -G., Bekassy-Molnar, -E., 2004. High organic content industrial wastewater treatment by membrane filtration. Desalination. 162, 117–120. https://doi.org/10.1016/S0011-9164(04)00034-7
Gul, -A., Hruza, -J., Yalcinkaya, -F., 2021. Fouling and chemical cleaning of microfiltration membranes: A mini-review. Polymers. 13(6), 1–25. https://doi.org/10.3390/polym13060846
Han, -Y., Han, -L., Yao, -Y., Li, -Y., Liu, -X., 2018. Key factors in FTIR spectroscopic analysis of DNA: The sampling technique, pretreatment temperature, and sample concentration. Analytical Methods. 10(21), 2436–2443. https://doi.org/10.1039/c8ay00386f
Hebbar, RS., Isloor, AM., Ismail, AF., 2017. 'Contact Angle Measurements'. Dalam Hilal, N., Ismail, AF., Matsuura, T., Oatley-Radcliffe, D. (ed.). Membrane Characterization. New York: Elsevier. https://doi.org/10.1016/B978-0-444-63776-5.00012-7
Hou, -X., Lv, -S., Chen, -Z., Xiao, -F., 2018. Applications of fourier transform infrared spectroscopy technologies on asphalt materials. Measurement. 121, 304–316. https://doi.org/10.1016/j.measurement.2018.03.001
Hube, -S., Eskafi, -M., Hrafnkelsdóttir, K, -F., Bjarnadóttir, -B., Bjarnadóttir, M, -Á., Axelsdóttir, -S., Wu, -B., 2020. Direct membrane filtration for wastewater treatment and resource recovery: A review. Science of the Total Environment. 710, 1–62. https://doi.org/10.1016/j.scitotenv.2019.136375
Khery, -Y., Daniar, S, -E., Nawi, N, I, -M., Bilad, M, -R., Wibisono, -Y., Nufida, B, -A., Ahmadi, -A., Jaafar, -J., Huda, -N., Kobun, -R., 2022. Ultra-low-pressure membrane filtration for simultaneous recovery of detergent and water from laundry wastewater. Membranes. 12(6), 1–12. https://doi.org/10.3390/membranes12060591
Kurmus, -H., Mohajerani, -A., 2020. The toxicity and valorization options of cigarette butts. Waste Management. 104, 104–118. https://doi.org/10.1016/j.wasman.2020.01.011
Le, N, -L., Nunes, S, -P., 2016. Materials and membrane technologies for water and energy sustainability. Sustainable Materials and Technologies. 7, 1–28. https://doi.org/10.1016/j.susmat.2016.02.001
Li, H., Chen, V. 2010. 'Membrane Fouling and Cleaning in Food and Bioprocessing'. Dalam Cui, ZF., Muralidhara, HS. (ed.). Membrane Technology. Oxford: Butterworth-Heinemann. https://doi.org/10.1016/B978-1-85617-632-3.00010-0
Mallya, D, -S., Abdikheibari, -S., Dumée, L, -F., Muthukumaran, -S., Lei, -W., Baskaran, -K., 2023. Removal of natural organic matter from surface water sources by nanofiltration and surface engineering membranes for fouling mitigation – A review. Chemosphere. 321, 1–28. https://doi.org/10.1016/j.chemosphere.2023.138070
Mikaeili, -F., Gouma, P, -I., 2018. Super water-repellent cellulose acetate mats. Scientific Reports. 8(1), 1–8. https://doi.org/10.1038/s41598-018-30693-2
Mojela, -H., Gericke, -G., Madhav, -H., Malinga, S, -P., 2023. Seasonal variations of natural organic matter (NOM) in surface water supplied to two coal-fired power stations. Environmental Science and Pollution Research. 30(6), 15454–15463. https://link.springer.com/content/pdf/10.1007/s11356-022-23239-7.pdf
Moradihamedani, -P., Abdullah, A, -H. 2017. High-performance cellulose acetate/polysulfone blend ultrafiltration membranes for removal of heavy metals from water. Water Science and Technology. 75(10), 1–12. https://doi.org/10.2166/wst.2017.122
O’Shea, K, -E., Dionysiou, D, -D., 2012. Advanced oxidation processes for water treatment. The Journal of Physical Chemistry Letters. 3(15), 2112–2113. https://doi.org/10.1021/jz200396h
Puls, -J., Wilson, S, -A., Hölter, -D., 2011. Degradation of cellulose acetate-based materials: A review. Journal of Polymers and the Environment. 19(1), 152–165. https://doi.org/10.1007/s10924-010-0258-0
Rajeswari, -A., Christy, E, J, -S., Mary, G, I, -C., Jayaraj, -K., Pius, -A., 2019. Cellulose acetate based biopolymeric mixed matrix membranes with various nanoparticles for environmental remediation-A comparative study. Journal of Environmental Chemical Engineering. 7(4), 1–32. https://doi.org/10.1016/j.jece.2019.103278
Sivakumar, -M., Mohan, D, -R., Rangarajan, -R. 2006. Studies on cellulose acetate-polysulfone ultrafiltration membranes: II. Effect of additive concentration. Journal of Membrane Science. 268(2), 208–219. https://doi.org/10.1016/j.memsci.2005.06.017
Thakur, V, -K., Voicu, S, -I., 2016. Recent advances in cellulose and chitosan based membranes for water purification: A concise review. Carbohydrate Polymers. 146, 148–165. https://doi.org/10.1016/j.carbpol.2016.03.030
Torkashvand, -J., Godini, -K., Jafari, A, -J., Esrafili, -A., Farzadkia, -M., 2021. Assessment of littered cigarette butt in urban environment, using of new cigarette butt pollution index (CBPI). Science of The Total Environment. 769, 1-6. https://doi.org/10.1016/j.scitotenv.2020.144864
UN-Water. 2023. Partnerships and cooperation for water. Dilihat: 27 September 2023. <https://www.unesco.org/reports/wwdr/2023/en>
Wei, -C., Zhang, -F., Hu, -Y., Feng, -C., Wu, -H., 2016. Ozonation in water treatment: the generation , basic properties of ozone and its practical application. Reviews in Chemical Engineering. 33(1), 49–89. https://doi.org/10.1515/revce-2016-0008
Wibisono, -Y., Alvianto, -D., Argo, B, -D., Hermanto, M, -B., Witoyo, J, -E., Bilad, M, -R., 2023. Low-fouling plate-and-frame ultrafiltration for juice clarification: Part 1—membrane preparation and characterization. Sustainability. 15(1), 1-17. https://doi.org/10.3390/su1501080
Williamson, J, -T., Graham, J, -F., Allman, D, -R., 1965. The modification of cigarette smoke by filter tips. Contributions to Tobacco & Nicotine Research. 3(3), 233–242. https://doi.org/10.2478/cttr-2013-0115
Yunos, M, -Z., Harun, -Z., Basri, -H., Ismail, A, -F., 2014. Studies on fouling by natural organic matter (NOM) on polysulfone membranes: Effect of polyethylene glycol (PEG). Desalination. 333(1), 36–44. https://doi.org/10.1016/j.desal.2013.11.019
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Amirah Zulfa Musyaffa, Nurul Fadillah, Ibrahim Maina Idriss, Wahyunanto Agung Nugroho, Muhammad Roil Bilad, Yusuf Wibisono
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal