OPTIMASI DEGRADASI LIGNOSELULOSA TANDAN KOSONG KELAPA SAWIT (TKKS) OLEH Phanerochaete chrysosporium MENGGUNAKAN RESPONSE SURFACE METHODOLOGY
DOI:
https://doi.org/10.21776/ub.jtp.2024.025.03.6Keywords:
Biodegradasi, Optimasi dengan RSM, Phanerochaete chrysosporium, TKKSAbstract
Tandan Kosong Kelapa Sawit (TKKS) merupakan biomassa lignoselulosa yang memiliki potensi untuk dikonversi menjadi produk bio-based melalui proses degradasi. Proses degradasi ini dapat dilakukan secara enzimatis oleh Phanerochaete chrysosporium, salah satu jamur pelapuk putih yang mampu memecah struktur kompleks lignoselulosa pada TKKS. Dalam penelitian ini, dilakukan optimasi faktor seperti konsentrasi glukosa, konsentrasi yeast extract dan waktu inkubasi agar memperoleh degradasi lignoselulosa TKKS yang optimal oleh P. chrysosporium dengan menggunakan Response Surface Methodology (RSM). Variabel respon penelitian ini yaitu total gula reduksi (TGR), total soluble phenol (TSP), susut berat dan pH. Hasil solusi optimal diperoleh pada perlakuan konsentrasi glukosa 30 g/L, konsentrasi yeast extract 0,5 g/L dan waktu inkubasi selama 21 hari menghasilkan nilai prediksi TGR sebesar 7,244 mg/g, nilai TSP sebesar 0,036 mg/g, pH sebesar 5,69, dan susut berat sebesar 17,085 %, dengan nilai desirability sebesar 0,844. Berdasarkan hasil verifikasi, respon TGR sebesar 7,874 mg/g, respon TSP sebesar 0,031 mg/g, respon pH sebesar 5,69, dan respon susut berat sebesar 16,702%.
References
Abdelhamid, S, -A., Hussein, A, -A., Asker, M, -S., El Sayed, -O., Mohamed, S, -S., 2019. Optimization of culture conditions for biodiesel production from Egyptian isolate Penicillium commune NRC2016. Bulletin of the National Research Centre. 43(1), 1-9. https://doi.org/10.1186/s42269-019-0045-6
Abraham, -A., Mathew, A, -K., Park, -H., Choi, -O., Sindhu, -R., Parameswaran, -B., Pandey, -A., Park, J, -H., Sang, B, -I., 2020. Pretreatment strategies for enhanced biogas production from lignocellulosic biomass. Bioresource Technology. 301, 1-13. https://doi.org/10.1016/j.biortech.2019.122725
Akhlisah, Z, -N., Yunus, -R., Abidin, Z, -Z., Lim, B, -Y., Kania, -D., 2021. Pretreatment methods for an effective conversion of oil palm biomass into sugars and high-value chemicals. Biomass and Bioenergy. 144, 1-20. https://doi.org/10.1016/j.biombioe.2020.105901
Alexandropoulou, -M., Antonopoulou, -G., Ntaikou, -I., Lyberatos, -G., 2017. Fungal pretreatment of willow sawdust with Abortiporus biennis for anaerobic digestion: Impact of an external nitrogen source. Sustainability. 9(1), 1-14. https://doi.org/10.3390/su9010130
Arora, D, -S., Sharma, R, -K., 2010. Ligninolytic fungal laccases and their biotechnological applications. Applied Biochemistry and Biotechnology. 160(6), 1760–1788. https://doi.org/10.1007/s12010-009-8676-y
Azhari, -A., Falah, -S., Nurjannah, -L., Suryani, -S., Bintang, -M., 2014. delignifikasi batang kayu sengon oleh Trametes versicolor. Current Biochemistry. 1(1), 1–10. https://doi.org/10.29244/cb.1.1.1-10
Azizah, -N., Suhartini, -S., Nurika, -I., 2021. Optimization of vanillin extraction from biodegradation of oil palm empty fruit bunches by Serpula lacrymans. Industria: Jurnal Teknologi Dan Manajemen Agroindustri. 10(1), 33–40. https://doi.org/10.21776/ub.industria.2021.010.01.4
Barborakova, -Z., Labuda, -R., Haubl, -G., Tancinova, -D., 2012. Effect of glucose concentration and growth conditions on the fungal biomass, pH of media and production of fumagillin by a non-pathogenic strain Penicillium Scabrosum. Journal of Microbiology, Biotechnology and Food Science. 1(4), 466–476. https://www.cabidigitallibrary.org/doi/pdf/10.5555/20123237824
Bellettini, M, -B., Fiorda, F, -A., Maieves, H, -A., Teixeira, G, -L., Ávila, -S., Hornung, P, -S., Júnior, A, -M., Ribani, R, -H., 2019. Factors affecting mushroom Pleurotus spp. Saudi Journal of Biological Sciences. 26(4), 633–646. https://doi.org/10.1016/j.sjbs.2016.12.005
Carvalho, A, K, -F., Bento, H, B, -S., Rivaldi, J, -D., de Castro, H, -F., 2018. Direct transesterification of Mucor circinelloides biomass for biodiesel production: Effect of carbon sources on the accumulation of fungal lipids and biofuel properties. Fuel. 234, 789–796. https://doi.org/10.1016/j.fuel.2018.07.029
Chen, -C., Jin, -D., Ouyang, -X., Zhao, -L., Qiu, -X., Wang, -F., 2018. Effect of structural characteristics on the depolymerization of lignin into phenolic monomers. Fuel, 223. 366–372. https://doi.org/10.1016/j.fuel.2018.03.041
Civzele, A., Jekimova, A, A, -S., Mezule, -L., 2023. Fungal ligninolytic enzymes and their application in biomass lignin pretreatment. 9(7), 1-13. https://doi.org/10.3390/jof9070780
da Silva Ferreira, -V., Sant’Anna, -C., 2017. The effect of physicochemical conditions and nutrient sources on maximizing the growth and lipid productivity of green microalgae. Phycological Research. 65(1), 3–13. https://doi.org/10.1111/pre.12160
Direktorat Jendral Perkebunan. 2021. Statistik Perkebunan Non Unggulan Nasional 2020-2022. Sekretariat Direktorat Jendral Perkebunan
Gajendiran, -A., Krishnamoorthy, -S., Abraham, -J., 2016. Microbial degradation of low-density polyethylene (LDPE) by Aspergillus clavatus strain JASK1 isolated from landfill soil. 3 Biotech. 6, 1-6. https://doi.org/10.1007/s13205-016-0394-x
Galkin -S., Vares, -T., Kalsi, -M., Hatakka, -A., 1998. Production of organic acids by different white-rot fungi as detected using capillary zone electrophoresis. Biotechnology Techniques. 12, 267–271. https://doi.org/10.1023/A:1008842012539
Hastuti, P, -B., Rohmiyati, S, -M., 2020. Application of empty fruit bunches compost and types of p fertilizer on the growth and phosphorus uptake in oil palm seedlings. Agrotechnology Research Journal. 4(2), 59-64. https://doi.org/10.20961/agrotechresj.v4i2.40784
Hidayatullah, I, -M., Al Husna, M, -D., Radiyan, -H., Kresnowati, M, T, A, -P., Suhardi, S, -H., Setiadi, -T., Boopathy, -R., 2021. Combining biodelignification and hydrothermal pretreatment of oil palm empty fruit bunches (OPEFB) for monomeric sugar production. Bioresource Technology Reports. 15, 1-6. https://doi.org/10.1016/j.biteb.2021.100808
Ho, P, -Y., Namasivayam, -P., Sundram, -S., Ho, C, -L., 2020. Expression of genes encoding manganese peroxidase and laccase of Ganoderma boninense in response to nitrogen sources, hydrogen peroxide and phytohormones. Genes. 11(11), 1–15. https://doi.org/10.3390/genes11111263
Hong, -Y., Dashtban, -M., Chen, -S., Song, -R., Qin, -W., 2012. Enzyme Production and lignin degradation by four basidiomycetous fungi in submerged fermentation of peat containing medium. International Journal of Biology. 4(1), 172–180. https://doi.org/10.5539/ijb.v4n1p172
Ishola, M, -M., Isroi., Taherzadeh, M, -J., 2014. Effect of fungal and phosphoric acid pretreatment on ethanol production from oil palm empty fruit bunches (OPEFB). Bioresource Technology. 165, 9–12. https://doi.org/10.1016/j.biortech.2014.02.053
Kim, D, -Y., Cho, E, -J., Kim, J, -W., Lee, Y, -W., Chung, H, -J., 2014. Production of cellulases by Penicillium sp. in a solid-state fermentation of oil palm empty fruit bunch. African Journal of Biotechnology. 13(1), 145–155. https://doi.org/10.5897/ajb12.2970
Kirk, T, -K., Farrell, R, -L., 1987. Enzimatic "Combustion": The microbial degradation of lignin. Annual Review of Microbiology. 41, 465–505. ttps://doi.org/10.1146/annurev.mi.41.100187.002341
Kucharska, -K., Hołowacz, -I., Konopacka-Łyskawa, -D., Rybarczyk, -P., Kamiński, -M., 2018. Key issues in modeling and optimization of lignocellulosic biomass fermentative conversion to gaseous biofuels. Renewable Energy. 129, 384–408. https://doi.org/10.1016/j.renene.2018.06.018
Kulasekaran, -A., Gopal, -A., Lakshimipathy, -R., Alexander, J, -J., 2015. Modification in pH measurements for getting accurate pH values with different pH meters irrespective of aging and drifts in the meters. International Journal of ChemTech Research. 8(5), 16–24. https://sphinxsai.com/2015/ch_vol8_no5/1/(16-24)V8N5.pdf
Lee, H, -V., Hamid, S, B, -A., Zain, S, -K., 2014. Conversion of lignocellulosic biomass to nanocellulose: Structure and chemical process. Scientific World Journal. 2014. 1-20. https://doi.org/10.1155/2014/631013
Li, -X., Li, -M., Pu, -Y., Ragauskas, A, -J., Zheng, -Y., 2020. Simultaneous depolymerization and fermentation of lignin into value-added products by the marine protist, Thraustochytrium striatum. Algal Research. 46(12),1–9. https://doi.org/10.1016/j.algal.2019.101773
Li, -X., Shi, -J., Das, -L., Tharayil, -N., Zheng, -Y., 2018. A novel platform for bioupgrading of lignin to valuable nutraceuticals and pharmaceuticals. 2018 ASABE Annual International Meeting. 2018, 1–12. https://elibrary.asabe.org/abstract.asp?aid=49183
Ma, -L., Wang, -X., Zhou, -J., Lü, -X., 2022. Degradation of switchgrass by Bacillus subtilis 1AJ3 and expression of a beta-glycoside hydrolase. Frontiers in Microbiology. 13, 1–16. https://doi.org/10.3389/fmicb.2022.922371
Majesty, K, -I., Herdiansyah, -H., 2019. The empty palm oil fruit bunch as the potential source of biomass in furfural production in Indonesia: Preliminary process design and environmental perspective. Journal of Physics: Conference Series. 1363, 1-6. https://doi.org/10.1088/1742-6596/1363/1/012096
Makela, -M., Galkin, -S., Hatakka, -A., Lundell, -T., 2002. Production of organic acids and oxalate decarboxylase in lignin-degrading white rot fungi. Enzyme and Microbial Technology. 30(4), 542–549. https://doi.org/10.1016/S0141-0229(02)00012-1
Mao, -L., Sonnenberg, A, S, -M., Hendriks, W, -H., Cone, J, -W., 2018. Preservation of Ceriporiopsis subvermispora and Lentinula edodes treated wheat straw under anaerobic conditions. Journal of the Science of Food and Agriculture. 98(3), 1232–1239. https://doi.org/10.1002/jsfa.8745
Mardawati, -E., Febrianti, E, -A., Fitriana, H, -N., Yuliana, -T., Putriana, N, -A., Suhartini, -S., Kasbawati., 2022. An integrated process for the xylitol and ethanol production from oil palm empty fruit bunch (OPEFB) using Debaryomyces hansenii and Saccharomyces cerevisiae. Microorganisms. 10(10), 1-11. https://doi.org/10.3390/microorganisms10102036
Miller, G, -L., 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry. 31(3), 426–428. https://doi.org/10.1021/ac60147a030
Minhas, A, -K., Hodgson, -P., Barrow, C, -J., Adholeya, -A., 2016. A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Frontiers in Microbiology. 7, 1–19. https://doi.org/10.3389/fmicb.2016.00546
Mustabi, -J., Wedawati., Armayanti, A, -K., 2018. Improving quality and digestibility of cocoa pod with white rot fungi. IOP Conference Series: Earth and Environmental Science. 157, 1-7. https://doi.org/10.1088/1755-1315/157/1/012002
Mutsengerere, -S., Chihobo, C, -H., Musademba, -D., Nhapi, -I., 2019. A review of operating parameters a ff ecting bio-oil yield in microwave pyrolysis of lignocellulosic biomass. Renewable and Sustainable Energy Reviews. 104. 328–336. https://doi.org/10.1016/j.rser.2019.01.030
Nanayakkara, -S., Patti, A, -F., Saito, -K., 2014. Chemical depolymerization of lignin involving the redistribution mechanism with phenols and repolymerization of depolymerized products. Green Chemistry. 16(4), 1897–1903. https://doi.org/10.1039/c3gc41708e
Nicolas, -O., Aly, -S., Marius, K, -S., François, -T., Cheikna, -Z., Alfred, S, -T., 2017. Effect of mineral salts and nitrogen source on yeast (Candida utilis NOY1) biomass production using tubers wastes. African Journal of Biotechnology. 16(8), 359–365. https://doi.org/10.5897/ajb2016.15801
Nnaemeka, -O., Pius, -O., Ndubuisi, -O., 2018. Palm oil biomass waste a renewable energy resource for power generation. Saudi Journal of Engineering and Technology. 3(12), 680–691. https://doi.org/10.21276/sjeat.2018.3.12.2
Nurika, -I., 2019. The pattern of lignocellulose degradation from Cacao pod using the brown rot (Serpula lacrymans) and white rot (Schyzophylum commune) fungi. IOP Conference Series: Earth and Environmental Science. 230, 1-7. https://doi.org/10.1088/1755-1315/230/1/012080
Nurika, -I., Azizah, -N., Suhartini, -S., Jung, Y, -H., Barker, G, -C., 2023. Integrated biorefinery approach: The generation of bioproducts vanillin and biomethane through a sequential bioconversion of lignocellulose from oil palm empty fruit bunch (OPEFB). Waste and Biomass Valorization. 15, 903-915. https://doi.org/10.1007/s12649-023-02205-5
Nurika, -I., Hidayat, -N., Rahma, N, -L., Anggarini, -S., 2017. The Effect of FeCl3 and Length of Incubation on the degradation ff lignocellulose from sengon and pine woods using serpula lacrymans. Journal of Environmental Engineering and Sustainable Technology. 4(2), 111–120. https://doi.org/10.21776/ub.jeest.2017.004.02.7
Nurika, -I., Indirahayu, -T., Suhartini, -S., 2020. The effect of malt extract and incubation time on ethanol production from lignocellulose degradation of oil palm empty fruit bunches (OPEFB) using Phlebia sp. MG-60. IOP Conference Series: Earth and Environmental Science. 475, 1-8. https://doi.org/10.1088/1755-1315/475/1/012066
Nurika, -I., Majid, Z, A, N, -M., Suprayogi., 2021. The identification of ethanol and aromatic compounds from delignification of cacao pod husk using Phlebia sp. MG-60. IOP Conference Series: Earth and Environmental Science. 733, 1-8. https://doi.org/10.1088/1755-1315/733/1/012143
Nurika, -I., Shabrina, E, -N., Azizah, -N., Suhartini, -S., Bugg, T, D, -H., Barker, G, -C., 2022. Application of ligninolytic bacteria to the enhancement of lignocellulose breakdown and methane production from oil palm empty fruit bunches (OPEFB). Bioresource Technology Reports. 17, 1-10. https://doi.org/10.1016/j.biteb.2022.100951
Nurika, -I., Suhartini, -S., Barker, G, -C., 2020. Biotransformation of tropical lignocellulosic feedstock using the brown rot fungus Serpula lacrymans. Waste and Biomass Valorization. 11(6), 2689–2700. https://doi.org/10.1007/s12649-019-00581-5
Ohimain, E, -I., Izah, S, -C., 2017. A review of biogas production from palm oil mill effluents using different configurations of bioreactors. Renewable and Sustainable Energy Reviews. 70, 242-253. https://doi.org/10.1016/j.rser.2016.11.221
Patil, P, -D., Yadav, G, -D., 2018. Comparative studies of white-rot fungal strains (Trametes hirsuta MTCC-1171 and Phanerochaete chrysosporium NCIM-1106) for effective degradation and bioconversion of ferulic acid. ACS Omega. 3(11), 14858–14868 https://doi.org/10.1021/acsomega.8b01614
Parveen, -H., Tewari, -L., Pradhan, -D., Chaudhry, -P., 2021. Combined pretreatment as an effective technology in breaking of phenolic polymer lignin from sustainable biomass: Bambusa balcooa. Biochemistry and Molecular Biology. 1, 1-31. https://www.preprints.org/manuscript/202105.0656/v1
Pitt, -J., Hocking, -A., 2009. Fungi and Food Spoilage. New York: Springer. https://doi.org/10.1007/978-0-387-92207-2
Rahmawati, -C., 2023. Optimization of geopolymer compressive strength using response surface methodology. Jurnal Inovasi Teknologi dan Rekayasa. 8(2), 203–212. https://doi.org/10.31572/inotera.Vol8.Iss2.2023.ID242
Rasid, N, S, -A., Shamjuddin, -A., Rahman, A, Z, -A., Amin, N, A, -S., 2021. Recent advances in green pre-treatment methods of lignocellulosic biomass for enhanced biofuel production. Journal of Cleaner Production. 321, 1-23. https://doi.org/10.1016/j.jclepro.2021.129038
Reddy, M, -S., Kanwal, H, -K., 2022. Influence of carbon, nitrogen sources, inducers, and substrates on lignocellulolytic enzyme activities of Morchella spongiola. Journal of Agriculture and Food Research. 7, 1-7. https://doi.org/10.1016/j.jafr.2022.100271
Rouches, -E., Zhou, -S., Steyer, J, -P., Carrere, -H., 2016. White-rot fungi pretreatment of lignocellulosic biomass for anaerobic digestion: Impact of glucose supplementation. Process Biochemistry. 51(11), 1784–1792. https://doi.org/10.1016/j.procbio.2016.02.003
Saldarriaga-Hernández, -S., Velasco-Ayala, -C., Leal-Isla Flores, -P., de Jesús Rostro-Alanis, -M., Parra-Saldivar, -R., Iqbal, H, M, -N., Carrillo-Nieves, -D., 2020. Biotransformation of lignocellulosic biomass into industrially relevant products with the aid of fungi-derived lignocellulolytic enzymes. International Journal of Biological Macromolecules. 161, 1099–1116. https://doi.org/10.1016/j.ijbiomac.2020.06.047
Salvachúa, -D., Prieto, -A., Vaquero, M, -E., Martínez, Á, -T., Martínez, M, -J., 2013. Sugar recoveries from wheat straw following treatments with the fungus Irpex lacteus. Bioresource Technology. 131, 218–225. https://doi.org/10.1016/j.biortech.2012.11.089
Saratale, R, -G., Cho, S, -K., Bharagava, R, -N., Patel, A, -K., Varjani, -S., Mulla, S, -I., Kim, D, -S., Bhatia, S, -K., Ferreira, L, F, -R., Shin, H, -S., Saratale, G, -D., 2022. A critical review on biomass-based sustainable biorefineries using nanobiocatalysts: Opportunities, challenges, and future perspectives. Bioresource Technology. 363, 1-17. https://doi.org/10.1016/j.biortech.2022.
Sargeant, LA., Jenkins, RW., Chuck, CJ. 2017. 'Lipid ‐ based Biofuels from Oleaginous Microbes' Dalam Love, J., Bryant, JA., (eds.) Biofuels and Bioenergy, First Edition. John Wiley & Sons Ltd, pp. 227–240.
Sari, A, -A., Kristiani, -A., Tachibana, -S., Sudiyani, -Y., Abimanyu, -H., 2014. Mechanisms and optimization of oil palm empty fruit bunch as a pre-grown source for white-rot fungus to degrade DDT. Journal of Environmental Chemical Engineering. 2(3), 1410–1415. https://doi.org/10.1016/j.jece.2014.07.018
Sari, L, -N., Madusari, -S., Sari, V, -I., 2022. Application of oil palm empty bunches as organic mulch in oil palm plantation ( Elaeis guineensis Jacq.): An evaluation and SWOT analysis. IOP Conference Series: Earth and Environmental Science. 1041, 1-6. https://doi.org/10.1088/1755-1315/1041/1/012053
Sarria-Alfonso, -V., Sánchez-Sierra, -J., Aguirre-Morales, -M., Gutiérrez-Rojas, -I., Moreno-Sarmiento, -N., Poutou-Piñales, R, -A., 2013. Culture media statistical optimization for biomass production of a ligninolytic fungus for future rice straw degradation. Indian Journal of Microbiology. 53(2), 199–207. https://doi.org/10.1007/s12088-013-0358-3
Shahidul, M, -I., Malcolm, M, -L., Begum, -S., Hashmi, M, S, -J., Islam, M, -S., Eugene, J, -J., 2020. Renewable energy production from environmental hazardous palm oil mill waste materials: A review. Encyclopedia of Renewable and Sustainable Materials. 2, 902-214. https://doi.org/10.1016/B978-0-12-803581-8.11564-4
Shoaib, -A., Bhran, -A., Rasmey, A, -H., Mikky, -Y., 2018. Optimization of cultural conditions for lipid accumulation by Aspergillus wentii Ras101 and its transesterification to biodiesel: Application of response surface methodology. 3 Biotech. 8(10), 1-11. https://doi.org/10.1007/s13205-018-1434-5
Singleton, V, -L., Rossi, J, -A., 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture. 16(3), 144–158. https://doi.org/10.5344/ajev.1965.16.3.144
Suhartini, -S., Hidayat, -N., Rohma, N, -A., Paul, -R., Pangestuti, M, -B., Utami, R, -N., Nurika, -I., Melville, -L., 2022. Sustainable strategies for anaerobic digestion of oil palm empty fruit bunches in Indonesia: a review. International Journal of Sustainable Energy. 41(11), 2044–2096. https://doi.org/10.1080/14786451.2022.2130923
Tao, -Z., Yuan, -H., Liu, -M., Liu, -Q., Zhang, -S., Liu, -H., Jiang, -Y., Huang, -D., Wang, -T., 2023. Yeast extract: characteristics, production, applications and future perspectives. Journal of Microbiology and Biotechnology. 33(1), 151–166. https://doi.org/10.4014/jmb.2207.07057
Thanapimmetha, -A., Vuttibunchon, -K., Titapiwatanakun, -B., Srinophakun, -P., 2012. Optimization of solid state fermentation for reducing sugar production from agricultural residues of sweet sorghum by trichoderma harzianum. Chiang Mai Journal of Science. 39(2), 270–280. https://www.thaiscience.info/journals/Article/CMJS/10905284.pdf
Ungureanu, C, -V., Favier, -L., Bahrim, G, -E., 2020. Improving biodegradation of clofibric acid by trametes pubescens through the design of experimental tools. Microorganisms. 8(8), 1–16. https://doi.org/10.3390/microorganisms8081243
Wahyu, A., Indah, N, U, -R., Rahayu, W, -P., 2020. Optimum growth conditions of Lactobacillus brevis LIPI13-2-LAB131 in β -galactosidase enzyme production. Journal of Biological Diversity. 21(11), 5403–5407. https://doi.org/10.13057/biodiv/d211147
Whiteford, -R., Nurika, -I., Schiller, -T., Barker, -G., 2021. The white-rot fungus, Phanerochaete chrysosporium, under combinatorial stress produces variable oil profiles following analysis of secondary metabolites. Journal of Applied Microbiology. 131(3), 1305–1317. https://doi.org/10.1111/jam.15013
Wu, -Z., Peng, -K., Zhang, -Y., Wang, -M., Yong, -C., Chen, -L., Qu, -P., Huang, -H., Sun, -E., Pan, -M., 2022. Lignocellulose dissociation with biological pretreatment towards the biochemical platform: A review. Materials Today Bio. 16, 1-19. https://doi.org/10.1016/j.mtbio.2022.100445
Xu, -R., Zhang, -K., Liu, -P., Khan, -A., Xiong, -J., Tian, -F., Li, -X., 2018. A critical review on the interaction of substrate nutrient balance and microbial community structure and function in anaerobic co-digestion. Bioresource Technology. 247, 1119–1127. https://doi.org/10.1016/j.biortech.2017.09.095
Yin, -C., Ying, -Y., Chiang, -A., Mun, -K., Yong, -L., 2020. Comparison study of adsorbent produced from renewable resources : Oil palm empty fruit bunch and rice husk. Materials Today: Proceedings. 29, 149–155. https://doi.org/10.1016/j.matpr.2020.05.642
Yusuf, H, -A., Hossain, S, M, -Z., Khamis, A, -A., Radhi, H, -T., Jaafar, A, -S., 2020. Optimization of CO2 biofixation rate by microalgae in a hybrid microfluidic differential carbonator using response surface methodology and desirability function. Journal of CO2 Utilization. 42, 1-11. https://doi.org/10.1016/j.jcou.2020.101291
Zhang, -S., Jiang, -M., Zhou, -Z., Zhao, -M., and Li, -Y., 2012. Selective removal of lignin in steam-exploded rice straw by Phanerochaete chrysosporium. International Biodeterioration & Biodegradation. 75, 89–95. https://doi.org/10.1016/j.ibiod.2012.09.003
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Sarah Chairunnisa, Irnia Nurika, Nur Hidayat

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal