PENGARUH PEMBERIAN PUPUK UREA DAN JARAK ELEKTRODA TERHADAP TEGANGAN LISTRIK PLANT MICROBIAL FUEL CELL TANAMAN PADI (ORYZA SATIVA)
DOI:
https://doi.org/10.21776/ub.jtp.2018.019.01.5Keywords:
Jarak Elektroda, Padi, PMFC, Tegangan Listrik, UreaAbstract
ABSTRAK
Plant Microbial Fuel Cell (PMFC) merupakan salah satu penghasil bioenergi berkelanjutan yang tidak mengganggu produksi pangan serta mereduksi energi input selama produksi energinya. Tanaman padi (Oryza sativa) merupakan tanaman yang berpotensi sebagai penghasil tegangan listrik dalam PMFC. Penelitian ini membahas tentang pengaruh variasi pemupukan dengan pupuk urea (1, 5, dan 10 g) dan jarak elektroda (4, 6, dan 8 cm) dalam sistem PMFC. Variabel yang diukur yaitu tegangan listrik maksimal yang dihasilkan tanaman padi, arus listrik maksimal dan daya listrik maksimal yang dihasilkan. Perekaman data keluaran tegangan listrik dilakukan pada semua sampel sistem PMFC selama 5 hari, mulai pukul 08.00 WIB hingga 15.00 WIB. Penelitian ini menunjukkan bahwa nilai tegangan listrik maksimum diperoleh perlakuan pemberian pupuk urea 10 g dan jarak elektroda 6 cm dengan nilai tegangan listrik maksimal sebesar 196 mV, arus listrik maksimal 0.78 mA dan daya listrik maksimal sebesar 153.66 mW/cm2
Â
ABSTRACT
Plant Microbial Fuel Cell (PMFC), one of sustainable bioenergy sources which is not interfere with food production and could reducing energy input during energy production. Oryza sativa is a plant that has potential as a source of electrical voltage in PMFC. This study explained the influence of urea fertilization variation (1, 5, and 10 g) and electrode gaps (4, 6, and 8 cm) in PMFC system. Variables measured are the maximum voltage produced by rice plants, maximum electric current and maximum power density. The output electrical voltage data was recorded on all samples PMFC system for 5 days, from 08.00 am until 03.00 pm. Based on this study, the maximum voltage obtained on 10 g of urea fertilizer and the electrode gap of 6 cm with maximum electric voltage of 196 mV, maximum electric current of 0.78 mA and maximum power density of 153.66 mW/cm2
References
Amir, L, Sari, A, P, Hiola, F, Jumadi, O. 2012. Ketersediaan nitrogen tanah dan pertumbuhan tanaman bayam (Amaranthus tricolor L.) yang diperlakukan dengan pemberian pupuk kompos azolla. Sainsmat. 1(2):167-180
Badan Pusat Statistik. 2015. Luas lahan sawah menurut provinsi (ha), 2003–2015. Dilihat 25 November 2017. <https://www.bps.go.id/dynamictable/2015/09/10/895/luas-lahan-sawah-menurut-provinsi-ha-2003-2015.html>
Bais, H, P, Weir, T, L, Perry, L, G, Gilroy, S, Vivanco, J, M. 2006. The role of root exudates in Rhizosphere interactions with plants and other organisms. Annu. Rev. Plant. Biol. 57:233–266
De Schamphelaire, L, den Bossche, L, V, Dang, H, S, Hofte, M, Boon, N, Rabaey, K, Verstraete, W. 2008. Microbial fuel cells generating electricity from Rizodeposits of rice plants. Environ. Sci. Technol. 42(8): 3053-3058
Helder, M, Strik, D, Hamelers, H, V, M, Buisman, C, J, N. 2012. The flat-plate plant microbial fuel cell: the effect of new design on internal resistances. Biotechnolgy for Biofuels. 5:70
Kaku, N, Yonezawa, N, Kodama, Y, Watanabe, K. 2008. Plant/microbe cooperation for electricity generation in a rice paddy field. Appl. Microbiol. Biotechnol. 79(1):43-49
Lazcano, C, Brandón, M, G, Revilla, P, DomÃnguez, J. 2013. Short-term effects of organic and inorganic fertilizers on soil microbial community structure and function. Biology and Fertility of So-
lis. 49(6):722-723
Lu, L, Xing, D, Ren, Z, J. 2015. Microbial community structure accompanied with electricity production in a constructed wetland plant microbial fuel cell. Bioresource Technology. 195(11):115-121
Moqsud, M, A, Yoshitake, J, Bushra, Q, S, Hyodo, M, Omine, K, Strik, D. 2015. Compost in plant microbial fuel cell for bioelectricity generation. Waste. Manag. 36:63-69
Sajana, T, K, Ghangrekar, M, M, Mitra, A. 2013. Application of sediment microbial fuel cell for in situ reclamation of aquaculture pond water quality. Aquacultural Engineering. 57: 101-107
Sinaga, D, H, Suyati, L, Aminin, A, L, N. 2014. Studi pendahuluan pemanfaatan whey tahu sebagai substrat dan efek luas permukaan elektroda dalam sistem microbial fuel cell. Jurnal Sains & Matematika. 22(2):30-35
Strik, D, P, B, T, B, Hamelers, H, V, M, Snel, J, F, H, Buisman, C, J, N. 2008. Green electricity production with living plants and bacteria in a fuel cell. International Journal of Energy Research. 32(9): 870-876
Timmers, R, A, Strik, D, P, B, T, B, Hamelers, H, V, Buisman, C, J, N. 2010. Long term performance of a plant microbial fuel cell with Spartina anglica. Appl. Microbiol. Biotechnol. 86(3):973–981
Uren, NC, Pinton, E, Varanini, R, Naminipieri, Z. 2000. ‘Types, Amounts, and Possible Functions of Compunds Released Into the Rhizosphere by Soil-Grown Plants’. Dalam S Willig, Z Varanini, P Nannipieri (eds.). The Rhizosphere Biochemistry and organic Substances at the Soil Plant Interface. CRC Press, USA
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal