PENGARUH PENAMBAHAN MnSO4 TERHADAP AKTIVITAS ENZIM MANGAN PEROKSIDASE PADA DELIGNIFIKASI LIMBAH BAGASSE OLEH PHLEBIA SP. MG-60

Authors

  • Irnia Nurika Universitas Brawijaya
  • Zuliyan Agus Nur Muchlis Majid Universitas Brawijaya
  • - Suprayogi Universitas Brawijaya

DOI:

https://doi.org/10.21776/ub.jtp.2019.020.03.3

Keywords:

Lignin, Mangan Peroksidase, MnSO4, Phlebia sp. MG-60

Abstract

ABSTRAK

Kandungan lignin pada bagasse dapat dimanfaatkan sebagai bahan kimia bernilai tinggi melalui proses degradasi lignoselulosa. Phlebia sp. MG-60 merupakan salah satu jenis jamur pelapuk yang menghasilkan enzim mangan peroksidase (MnP) untuk mendegradasi lignin. Akan tetapi, untuk meningkatkan aktivitas enzim MnP dibutuhkan induser seperti MnSO4. Tujuan penelitian ini adalah untuk mengetahui pengaruh penambahan MnSO4 terhadap aktivitas enzim MnP Phlebia sp. MG-60 dalam  proses delignifikasi selama 28 hari inkubasi. Mangan dengan konsentrasi 0 mM; 0,1 mM; dan 0.5 mM ditambahkan pada substrat yang telah diinokulasi dengan Phlebia sp. MG-60 dan diinkubasi selama 28 hari. Hasil kemudian diekstrak selanjutnya diuji kadar lignin dan aktivitas enzim MnP yang dihasilkan menggunakan spektofotometri. Hasil menunjukkan aktivitas enzim MnP bagasse yang paling besar dengan penambahan 0,1 mM MnSO4 0.605 IU/mL dengan lignin removal mencapai 31.60%.

  

ABSTRACT

Lignin compound in bagasse can be used as a high-value chemical through lignocellulose degradation. Phlebia sp. MG-60 is one type of rot fungus that produces the MnP enzyme to degrade lignin. However, to increase the MnP activity, inducer such as MnSO4 is needed. The purpose of this study was to determine the effect of MnSO4 on Phlebia sp. MG-60 performance and MnP activity of Phlebia sp. MG-60 during 28 days degradation of lignocellulose. Manganese with a concentration of 0 mM; 0,1 mM; and 0.5 mM was added to the substrate which had been inoculated with Phlebia sp. MG-60 and incubated for 28 days. The results were then extracted furthermore lignin content assay and MnP enzyme activity tested by using spectrophotometry. The results showed the greatest bagasse MnP enzyme activity with the addition of 0,1 mM MnSO4 0.605 IU / mL with lignin removal reached of 31.60%.

References

Acevedo, -F., Pizzul, -L., Castillo, -M. del -P., Rubilar, O., Lienqueo, M.E., Tortella, G., Diez, M.C., 2011. A practical culture technique for enhanced production of manganese peroxidase by Anthracophyllum discolor Sp4. Brazilian Arch. Biol. Technol. 54,1175–1186. https://doi.org/10,1590/S1516-89132011000600013

Asgher, -M., Yasmeen, -Q., Iqbal, -H.M.N., 2013. Enhanced decolorization of Solar brilliant red 80 textile dye by an indigenous white rot fungus Schizophyllum commune IBL-06. Saudi J. Biol. Sci. 20, 347–352. https://doi.org/10,1016/j.sjbs.2013.03.004

Böckle, B., Martínez, -M.J., Guillén, -F., Martínez, -Ã.T., 1999. Mechanism of peroxidase inactivation in liquid cultures of the ligninolytic fungus Pleurotus pulmonarius. Appl. Environ. Microbiol. 65, 923–928.

Brown, -J.A., Alic, -M., Gold, -M.H., 1991. Manganese peroxidase gene transcription in Phanerochaete chrysosporium: Activation by manganese. J. Bacteriol. 173, 4101–4106. https://doi.org/10,1128/jb.173.13.4101-4106.1991

Chesson, -A., 1981. Effects of sodium hydroxide on cereal straws in relation to the enhanced degradation of structural polysaccharides by rumen microorganisms. J. Sci. Food Agric. 32, 745–758. https://doi.org/1,1002/jsfa.2740320802

Datta, -R., Kelkar, -A., Baraniya, -D., Molaei, -A., Moulick, -A., Meena, -R.S., Formanek, -P., 2017. Enzymatic degradation of lignin in soil: A review. Sustainability 2017, 9(7), 1163. https://doi.org/10.3390/su9071163

Elisashvili, -V., Kachlishvili, -E., Tsiklauri, -N., Metreveli, -E., Khardziani, -T., Agathos, -S.N., 2009. Lignocellulose-degrading enzyme production by white-rot Basidiomycetes isolated from the forests of Georgia. World J. Microbiol. Biotechnol. 25, 331–339. https://doi.org/10,1007/s11274-008-9897-x

Gassara, -F., Brar, -S.K., Tyagi, -R.D., Verma, -M., Surampalli,- R.Y., 2010. Screening of agro-industrial wastes to produce ligninolytic enzymes by Phanerochaete chrysosporium. Biochem. Eng. J. 49, 388–394. https://doi.org/10,1016/j.bej.2010.01.015

Giardina, -P., Palmieri, -G., Fontanella, -B., Rivieccio, -V., Sannia, -G., 2000. Manganese peroxidase isoenzymes produced by Pleurotus ostreatus grown on wood sawdust. Arch. Biochem. Biophys. 376, 171–179. https://doi.org/10,1006/abbi.1999.1691

Gold, -M.H., Alic, -M., 1993. Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosponum. Microbiol. Rev. 57, 605–622. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC372928/

Hofrichter, -M., 2002. Review: Lignin conversion by manganese peroxidase (MnP). Enzyme Microb. Technol. 30, 454–466. https://doi.org/10,1016/S0141-0229(01)00528-2

Järvinen, -J., Taskila, -S., Isomäki, -R., Ojamo, H., 2012. Screening of white-rot fungi manganese peroxidases: A comparison between the specific activities of the enzyme from different native producers. AMB Express 2, 1–9. https://doi.org/10,1186/2191-0855-2-62

Kamei, -I., Hirota, -Y., Mori, -T., Hirai, -H., Meguro, S., Kondo, R., 2012. Direct ethanol production from cellulosic materials by the hypersaline-tolerant white-rot fungus Phlebia sp. MG-60. Bioresour. Technol. 112, 137–142. https://doi.org/10,1016/j.biortech.2012.02.109

Kamei, -I., Nitta, T., Nagano, -Y., Yamaguchi, -M., Yamasaki, -Y., Meguro, -S., 2014. Evaluation of spent mushroom waste from Lentinula edodes cultivation for consolidated bioprocessing fermentation by Phlebia sp. MG-60. Int. Biodeterior. Biodegrad. 94, 57–62. https://doi.org/10,1016/j.ibiod.2014.07.001

Kapich, -A.N., Prior, -B.A., Botha, -A., Galkin, -S., Lundell, -T., Hatakka, -A., 2004. Effect of lignocellulose-containing substrates on production of ligninolytic peroxidases in submerged cultures of Phanerochaete chrysosporium ME-446. Enzyme Microb. Technol. 34, 187–195. https://doi.org/10,1016/j.enzmictec.2003.10.004

Kaur, -B., Chakraborty, -D., 2013. Biotechnological and molecular approaches for vanillin production: A review. Appl. Biochem. Biotechnol. 169, 1353–1372. https://doi.org/10,1007/s12010-012-0066-1

Khuong, -L.D., Kondo, -R., Leon, -R. De, Anh, -T.K., Meguro, -S., Shimizu, -K., Kamei, I., 2014. Effect of chemical factors on integrated fungal fermentation of sugarcane bagasse for ethanol production by a white-rot fungus, Phlebia sp. MG-60. Bioresour. Technol. 167, 33–40. https://doi.org/10,1016/j.biortech.2014.05.064

Mancilla, -R.A., Canessa, -P., Manubens, -A., Vicuña, R., 2010. Effect of manganese on the secretion of manganese-peroxidase by the basidiomycete Ceriporiopsis subvermispora. Fungal Genet. Biol. 47, 656–661. https://doi.org/10,1016/j.fgb.2010.04.003

Rajan, -A., Kurup, -J.G., Abraham, -T.E., 2010. Solid state production of manganese peroxidases using arecanut husk as substrate. Brazilian Arch. Biol. Technol. 53, 555–562. https://doi.org/10,1590/S1516-89132010000300008

Silva, -M.L.C., Souza, -V.B. de, Santos, V. da S., Kamida, H.M., Vasconcellos-Neto, J.R.T. de, Góes-Neto, A., Bello Koblitz, M.G., 2014. Production of Manganese Peroxidase by Trametes villosa on Unexpensive Substrate and Its Application in the Removal of Lignin from Agricultural Wastes. Adv. Biosci. Biotechnol. 05(14), 1067–1077. https://doi.org/10.4236/abb.2014.514122

Tsuyama, -T., Yamaguchi, -M., Kamei, -I., 2017. Accumulation of sugar from pulp and xylitol from xylose by pyruvate decarboxylase-negative white-rot fungus Phlebia sp. MG-60. Bioresour. Technol. 238, 241–247. https://doi.org/10,1016/j.biortech.2017.04.015

Tuor, -U., Wariishi, -H., Gold, -M.H., Schoemaker, H.E., 1992. Oxidation of Phenolic Arylglycerol β-Aryl Ether Lignin Model Compounds by Manganese Peroxidase from Phanerochaete chrysosporium : Oxidative Cleavage of an α-Carbonyl Model Compound. Biochemistry. 31, 4986–4995. https://doi.org/10,1021/bi00136a011

Vrsanska, -M., Buresova, -A., Damborsky, P., Adam, V., 2015. Influence of Different Inducers on Ligninolytic Enzyme Activities. J. Met. Nanotechnologies. 64–70.

Wang, -J., Suzuki, -T., Dohra, -H., Takigami, -S., Kako,- H., Soga, -A., Kamei, -I., Mori, -T., Kawagishi, -H., Hirai, -H., 2016. Analysis of ethanol fermentation mechanism of ethanol producing white-rot fungus Phlebia sp. MG-60 by RNA-seq. BMC Genomics 17, 1–11. https://doi.org/10,1186/s12864-016-2977-7

Wariishi, H., Akileswaran, L., Gold, M.H., 1988. Manganese Peroxidase from the Basidiomycete Phanerochaete Chrysosporium: Spectral Characteriza- tion of the Oxidized States and the Catalytic Cycle. Biochemistry. 27, 5365–5370. https://doi.org/10,1021/bi00414a061

Wariishi, -H., Valli, -K., Gold, -M.H., 1992. Manganese (II) Oxidation by Manganese Peroxidase from the Basidiomycete Phanerochaete chrysosporium. J. Biol. Chem. 267, 23688–23695.

Yamasaki, -Y., Yamaguchi, -M., Yamagishi, -K., Hirai, -H., Kondo, -R., Kamei, -I., Meguro, S., 2014. Expression of a manganese peroxidase isozyme 2 transgene in the ethanologenic white rot fungus Phlebia sp. strain MG-60. Springerplus. 3, 1–6. https://doi.org/10,1186/2193-1801-3-699

Yuwono, -T., Rolanda, -E., 2012. Fermentasi hidrolisat enzimatik bagasse tebu menjadi hidrogen. Laboratorium Teknik Biokimia. Jurnal Teknik Pomits. 1(1), 1–5.

Zeng, -J., Tong, -Z., Wang, -L., Zhu, -J.Y., Ingram, -L., 2014. Isolation and structural characterization of sugarcane bagasse lignin after dilute phosphoric acid plus steam explosion pretreatment and its effect on cellulose hydrolysis. Bioresour. Technol. 154, 274–281. https://doi.org/10,1016/j.biortech.2013.12.072

Downloads

Published

2019-12-13

Issue

Section

Articles