UJI KEASLIAN MADU LEBAH HUTAN APIS DORSATA DARI NEKTAR UNIFLORA ACACIA MANGIUM MENGGUNAKAN SPEKTROSKOPI ULTRAVIOLET DAN KEMOMETRIKA
DOI:
https://doi.org/10.21776/ub.jtp.2021.022.01.3Keywords:
Akurasi Klasifikasi, LDA, Madu Acacia Mangium, Pemalsuan Madu, Uji KeaslianAbstract
ABSTRAK
 Produksi madu uniflora cukup terbatas, khususnya yang dihasilkan oleh lebah hutan Apis dorsata. Madu uniflora yang dihasilkan lebah hutan Apis dorsata dari nektar bunga pohon Akasia Mangium (Acacia mangium) merupakan salah satu madu hutan premium yang sangat populer di Indonesia dan Malaysia. Studi uji keaslian madu uniflora Acacia mangium menggunakan spektroskopi ultraviolet belum dilakukan. Penelitian ini dilakukan untuk mengevaluasi penggunaan spektroskopi ultraviolet dan kemometrika untuk membedakan madu uniflora Acacia mangium dengan madu multiflora yang memiliki warna mirip madu uniflora Acacia mangium. Sebanyak 50 sampel madu uniflora Acacia mangium dan 50 sampel madu  multiflora disiapkan sebagai sampel. Sampel tersebut disiapkan dengan cara mencampurkan madu dan air distilasi dengan perbandingan 1:30 (volume/volume). Spektra seluruh sampel madu dan referensi (air distilasi) di panjang gelombang 190-1100 nm (full spectrum) diakuisisi menggunakan spektrometer UV-visible (Genesys™ 10S UV-Vis,  Thermo  Scientific,  USA). Klasifikasi tidak terbimbing menggunakan metode HCA dan PCA menunjukkan sampel madu dapat dikelompokkan ke dalam dua kluster berbeda yaitu kluster madu uniflora dan kluster madu multiflora. Klasifikasi terbimbing menggunakan metode LDA menunjukkan hasil yang sangat memuaskan dengan nilai akurasi sebesar 100% berhasil diperoleh baik untuk kalibrasi maupun prediksi.
Kata kunci: Akurasi Klasifikasi; LDA; Madu Acacia Mangium; Pemalsuan Madu; Uji Keaslian
Â
ABSTRACT
The production of monofloral honey is quite limited, especially that produced by Apis dorsata forest honeybees. The monofloral honey produced by Apis dorsata bees from the flower nectar of the Acacia mangium tree (Acacia mangium) is one of the premium forest honey which is very popular in Indonesia and Malaysia. The study of the authenticity of Acacia mangium monofloral honey using UV spectroscopy has not been carried out. This research was conducted to evaluate the use of UV spectroscopy and chemometrics to discriminate monofloral Acacia mangium honey from multifloral honey which has a similar color to Acacia mangium monofloral honey. A total of 50 samples of Acacia mangium monofloral honey and 50 samples of multifloral honey were prepared as samples. The sample was prepared by mixing honey sample and distilled water in a ratio of 1:30 (volume / volume). Spectra of all honey and reference samples (distilled water) at 190-1100 nm (full spectrum) wavelengths were acquired using a UV-visible spectrometer (Genesys â„¢ 10S UV-Vis, Thermo Scientific, USA). Unsupervised classification using the HCA and PCA methods indicated that the honey samples could be grouped into two different clusters, namely the monofloral honey cluster and the multifloral honey cluster. Supervised classification using the LDA method shows very satisfying results with an accuracy value of 100% successfully obtained for both calibration and prediction.
Keywords : Acacia Mangium Honey; Authentication; Classification Accuracy; Honey Adulteration; LDAReferences
Aliaño-González, M, -J., Ferreiro-González, -M., Espada-Bellido, -E., Palma, -M., Barbero, -G, -F., 2019. A screening method based on Visible-NIR spec¬troscopy for the identification and quantification of different adulterants in high-quality honey. Talanta. 203, 235–241. https://doi.org/10.1016/j. talanta.2019.05.067
Andrarde, P., -B., Amaral, M, -T., Isabel, -P., Carvalho, J, C, M, -F., Seabra, R, -M., da Cunha, A, -P., 1999. Physicochemi¬cal attributes and pollen spectrum of Portuguese heather honeys. Food Chemistry. 66(4), 503–510. https://doi. org/10.1016/S0308-8146(99)00100-4
Anjos, -O., Iglesias, -C., Peres, -F., MartÃn¬ez, -J., GarcÃa, -A., Taboada, -J., 2015. neural networks applied to discrimi¬nate botanical origin of honeys. Food Chemistry. 175, 128–136. https://doi. org/10.1016/j.foodchem.2014.11.121
Corvucci, -F., Nobili, -L., Melucci, -D., Grillenzoni, F, -V., 2015. The discrimi¬nation of honey origin using melisso¬palynology and Raman spectroscopy techniques coupled with multivariate analysis. Food Chemistry. 169, 297–304. https://doi.org/10.1016/j.food¬chem.2014.07.122
Da Silva, P, -M., Gauche, -C., Gonzaga, L, -V., Costa, A, C, -O., Fett, -R., 2016. Hon¬ey: Chemical composition, stability and authenticity. Food Chemistry. 196, 309–323. https://doi.org/10.1016/j. foodchem.2015.09.051
Dankowska, -A., Domagała, -A., Kowalewski, -W., 2017. Quantification of coffea arabica and coffea canephora var. robusta concen¬tration in blends by means of synchro¬nous fluorescence and UV-Vis spectros-copies. Talanta. 172, 215–220. https:// doi.org/10.1016/j.talanta.2017.05.036
Dimitrova, -B., Gevrenova, -R., Anklam, -E., 2007. Analysis of phenolic acids in honeys of different floral origin by sol¬id-phase extraction and high-perfor¬mance liquid chromatography. Phyto¬chemical Analysis. 18(1), 24–32. https:// doi.org/10.1002/pca.948
Diniz, P, H, G, -D., Barbosa, M, -F., De Melo Milanez, K, D, -T., Pistonesi, M, -F., De Araújo, M, C, -U., 2016. Using UV-Vis spectroscopy for simultaneous geo¬graphical and varietal classification of tea infusions simulating a home-made tea cup. Food Chemistry. 192, 374–379. https://doi.org/10.1016/j.food-chem.2015.07.022
Ferreiro-González, -M., Espada-Bellido, -E., Guillén-Cueto, -L., Palma, -M., Bar¬roso, C, -G., Barbero, G, -F., 2018. Rapid quantification of honey adul¬teration by visible-near infrared spec¬troscopy combined with chemomet¬rics. Talanta. 188, 288–292. https://doi. org/10.1016/j.talanta.2018.05.095
Frausto-Reyes, -C., Casillas-Peñuelas, -R., Quintanar-Stephano, J, -L., MacÃas- López, -E., Bujdud-Pérez, J, -M., Medina-RamÃrez, -I., 2017. Spectro¬scopic study of honey from Apis mel¬lifera from different regions in Mexico. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 178, 212–217. https://doi.org/10.1016/j. saa.2017.02.009
Giordano, -A., Retamal, -M., Fuentes, -E., As¬car, -L., Velásquez, -P., RodrÃguez, -K., Montenegro, -G., 2019. Rapid scanning of the origin and antioxidant potential of chilean native honey through infra¬red spectroscopy and chemometrics. Food Analytical Methods. 12, 1511–1519. https://doi.org/10.1007/s12161-019- 01473-z
Hennessy, -S., Downey, -G., O'donnell, C, -P., 2010. Attempted confirmation of the provenance of corsican PDO honey us¬ing FT-IR spectroscopy and multivari¬ate data analysis. Journal of Agricultural and Food Chemistry. 58, 9401–9406. htt¬ps://doi.org/10.1021/jf101500n
Kasprzyk, -I., Depciuch, -J., Grabek-Lejko, -D., Parlinska-Wojtan, -M., 2018. FTIR-ATR spectroscopy of pollen and honey as a tool for unifloral honey authenti¬cation. The case study of rape honey. Food Control. 84, 33–40. https://doi. org/10.1016/j.foodcont.2017.07.015
Kim, H, -S., Dhage, S, -R., Shim, D, -E., Hahn, H, -T., 2009. Intense pulsed light sinter¬ing of copper nanoink for printed elec¬tronics. Applied Physic A Material Science and Processing. 97, 791–798. https://doi. org/10.1007/s00339-009-5360-6
Kuballa, -T., Brunner, T, -S., Thongpan¬chang, -T., Walch, S, -G., Lachenmei¬er, D, -W., 2018. Application of NMR for authentication of honey, beer and spices. Current Opinion in Food Science. 19, 57–62. https://doi.org/10.1016/j. cofs.2018.01.007
Kuropatnicki, A, -K., Kłósek, -M., Kucharze¬wski, -M., 2018. Honey as medicine: his¬torical perspectives. Journal of Apicultural Research. 57, 113–118. https://doi.org/1 0.1080/00218839.2017.1411182
Lenhardt, -L., Zeković, -I., Dramićanin, -T., Tešić, -Z., Milojković-Opsenica, -D., Dramićanin, M, -D., 2014. Authentication of the botani¬cal origin of unifloral honey by infrared spectroscopy coupled with support vec¬tor machine algorithm. Physica Scripta. T162. https://doi.org/10.1088/0031- 8949/2014/T162/014042
Liu, -W., Zhang, -Y., Yang, -S., Han, -D., 2018. Terahertz time-domain attenuated to¬tal reflection spectroscopy applied to the rapid discrimination of the bo¬tanical origin of honeys. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 196, 123–130. https:// doi.org/10.1016/j.saa.2018.02.009
Mădaş, M, -N., Mărghitaş, L, -A., Dezmirean, D, -S., Bobiş, -O., Abbas, -O., Danthine, -S., Francis, -F., Haubruge, -E., Nguy¬en, B, -K., 2019. Labeling regulations and quality control of honey origin: A review. Food Reviews International. 36, 215–240. https://doi.org/10.1080/875 59129.2019.1636063
Martins, R, -C., Lopes, V, -V., Valentão, -P., Carvalho, J, C, M, -F., Isabel, -P., Am¬aral, M, -T., Batista, M, -T., Andrade, P, -B., Silva, B, -M., 2008. Relevant principal component analysis ap¬plied to the characterisation of Portu¬guese heather honey. Natural Product Research. 22, 1560–1582. https://doi. org/10.1080/14786410701825004
Mehretie, -S., Al Riza, D, -F., Yoshito, -S., Kondo, -N., 2018. Classification of raw Ethiopian honeys using front face fluorescence spectra with multivari¬ate analysis. Food Control. 84, 83–88. https://doi.org/10.1016/j.food¬cont.2017.07.024
Mondragón-Cortez, -P., Ulloa, J, -A., Rosas- Ulloa, -P., RodrÃguez-RodrÃguez, -R., Resendiz Vázquezc, J, -A., 2013. Phys¬icochemical characterization of honey from the West region of México. CyTA - Journal of Food. 11, 7–13. https://doi. org/10.1080/19476337.2012.673175
Moniruzzaman, -M., Sulaiman, S, -A., Azlan, S, A, -M., Gan, S, -H., 2013. Two-year variations of phenolics, flavonoids and antioxidant contents in acacia honey. Molecules. 18, 14694–14710. https:// doi.org/10.3390/molecules181214694
Muhammad, -A., Azeredo, R, B, D, -V., 2014. 1H NMR spectroscopy and low-field relaxometry for predicting viscos¬ity and API gravity of Brazilian crude oils - A comparative study. Fuel. 130, 126–134. https://doi.org/10.1016/j. fuel.2014.04.026
Oddo, L, -P., Piro, -R., 2004. Main European unifloral honeys: descriptive sheets. Apidologie. 35, S38–S81. https://doi. org/10.1051/apido:2004049
Piana, M, -L., Oddo, L, -P., Bentabol, -A., Bru¬neau, -E., Bogdanov, -S., Declerck, -C., 2004. Sensory analysis applied to honey: state of the art. Apidologie. 35, S26–S37. https://doi.org/10.1051/apido:2004048
Pyrzynska, -K., Biesaga, -M., 2009. Analy¬sis of phenolic acids and flavonoids in honey. TrAC Trends in Analytical Chemistry. 28, 893–902. https://doi. org/10.1016/j.trac.2009.03.015
Samotaev, -N., Vasilyev, -V., Malkin, -E., Gromov, -E., Belyakov, -V., Golovin, -A., Pershenkov, -V., Ivanov, -I., Shal¬taeva, -Y., Matusko, -M., 2015. System for synchronous detection trace of ex¬plosives and drags substances on hu¬man fingers. Procedia Engineering. 120, 1050–1053. https://doi.org/10.1016/j. proeng.2015.08.722
Souto, U, T, C, -P., Pontes, M, J, -C., Silva, E, -C., Galvão, R, K, -H., Araújo, M, C, -U., Sanches, F, A, -C., Cunha, F, A, -S., Oliveira, M, S, -R., 2010. UV-Vis spectrometric classification of coffees by SPA-LDA. Food Chemistry. 119, 368–371. https://doi.org/10.1016/j. foodchem.2009.05.078
Stefas, -D., Gyftokostas, -N., Couris, -S., 2020. Laser induced breakdown spectrosco¬py for elemental analysis and discrimi¬nation of honey samples. Spectrochimi¬ca Acta Part B: Atomic Spectroscopy. 172, 105969. https://doi.org/10.1016/j. sab.2020.105969
Suhandy, -D., Yulia, -M., 2017a. The use of partial least square regression and spectral data in UV-Visible region for quantification of adulteration in Indo¬nesian palm civet coffee. International Journal of Food Science. 2017, 1–7. htt¬ps://doi.org/10.1155/2017/6274178
Suhandy, -D., Yulia, -M., 2017b. Peaberry cof¬fee discrimination using UV-visible spectroscopy combined with SIMCA and PLS-DA. International Journal of Food Properties. 20, S331–S339. https://doi.or g/10.1080/10942912.2017.1296861
Suhandy, -D., Yulia, -M., Kusumiyati., 2020. Klasifikasi madu berdasarkan jenis lebah (Apis dorsata versus Apis mellif¬era) menggunakan spektroskopi ultra¬violet dan kemometrika. Jurnal Ilmu Pertanian Indonesia. 25, 564–573. htt¬ps://doi.org/10.18343/jipi.25.4.564
Tewari, -J., Irudayaraj, -J., 2004. Quantifica¬tion of saccharides in multiple floral honeys using fourier transform infra¬red microattenuated total reflectance spectroscopy. Journal of Agricultural and Food Chemistry. 52, 3237–3243. htt¬ps://doi.org/10.1021/jf035176+
Von Der Ohe, -W., Oddo, L, -P., Piana, M, -L., Morlot, -M., Martin, -P., 2004. Harmo¬nized methods of melissopalynology. Apidologie. 35, S18–S25. https://doi. org/10.1051/apido:2004050
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal