PENETAPAN KADAR TOTAL ARSENIK DALAM MAKANAN PENDAMPING AIR SUSU IBU DENGAN INSTRUMEN AAS-HVG: VERIFIKASI METODE DAN PERBANDINGAN PROGRAM MICROWAVE
DOI:
https://doi.org/10.21776/ub.jtp.2021.022.02.6Keywords:
Arsenik, Digesti, Microwave, Makanan Pendamping Asi, Verifikasi MetodeAbstract
ABSTRAK
Pemilihan program digesti sampel dengan microwave penting dilakukan untuk memperoleh hasil destruksi yang sempurna. Kesempurnaan destruksi sampel menentukan keberterimaan parameter verifikasi metode yaitu akurasi, presisi, linearitas dan sensitivitas. Penelitian ini bertujuan untuk memilih metode destruksi microwave dalam penetapan total arsenik dalam MP-ASI menggunakan AAS-HVG. Evaluasi dilakukan terhadap parameter verifikasi metode dan perbandingan dua program microwave dilakukan dengan uji t. Hasil penelitian menunjukkan bahwa program destruksi microwave pertama (P1) lebih baik daripada program microwave pembanding (P2) yang menghasilkan rata-rata recovery 84,79% hingga 104,57% untuk sampel bermatriks makanan dan 64,43% untuk sampel air. Presisi metode terpilih menghasilkan rata-rata RSD 6,63% hingga 13,41% untuk sampel bermatriks dan 4,66% untuk sampel air. Linearitas metode pada program terpilih menunjukkan R: 0,997 dengan koefisien variasi regresi Vx0: 4,24%, sedangkan batas deteksi dan batas kuantifikasi sebagai parameter sensitivitas berturut-turut 0,04 ng/g dan 0,12 ng/g untuk sampel bermatriks serta 0,01 ng/ml dan 0,02 ng/ml untuk sampel air. Metode penetapan kadar total arsenik dengan program microwave terpilih memenuhi syarat keberterimaan menurut uji verifikasi metode.
ABSTRACT
  It is important to choose a sample digestion program with microwave to obtain the best digestion results. The sample digestion may determine the acceptability of the method verification parameters, namely accuracy, precision, linearity and sensitivity. The aim of this study was to select a microwave digestion method in determining the total arsenic in complementary foods using HVG-AAS. The evaluation was carried out on the parameter verification method and the comparison of the two microwave programs was carried out using the t test. The results showed that the first microwave digestion program (P1) was better than the comparator microwave program (P2) which resulted in an average recovery of 84.79% to 104.57% for matrix samples and 64,43% for water samples. The precision of the selected method resulted in an average RSD of 6.63% to 13.41% for food matrix samples and 4.66% for water samples. The linearity of the method in the selected program shows R: 0.997 with a regression coefficient of variation Vx0: 4.24%, while the limit of detection and limit of quantification as sensitivity parameters are 0.04 ng/g and 0.12 ng/g for matrix samples respectively 0.01 ng/ml and 0.02 ng/ml for water samples. The method for determining the total arsenic concentration using the selected microwave program met the acceptability requirements according to the method verification test.
References
Alava, -P., Van de Wiele, -T., Tack, -F., Du Laing, -G., 2012. Extensive grinding and pressurized extraction with water are key points for effective and species preserving extraction of arsenic from rice. Analytical Methods. 4, 1237–1243. https://doi.org/10.1039/c2ay25094b
AOAC, 2019. Appendix K: Guideline for Dietary Supplements and Botanical
AOAC, 2016. Appendix F: Guidelines for Standard Method Performance Requirements
AOAC, 2005. AOAC Official Method 999.10 Lead, Cadmium, Zinc, Cooper, and Iron in Foods
de Oliveira, -E., 2003. Sample preparation for atomic spectroscopy: Evolution and future trends. Journal of the Brazilian Chemical Society. 14, 174–182. https://doi.org/10.1590/S0103-50532003000200004
Gómez-Ariza, A, -L., Morales, -E., Giráldez, -I., Sánchez-Rodas, -D., Velasco, -A., 2001. Sample treatment in chromatography-based speciation of organometallic pollutants. Journal of Chromatography A. 938, 211–224. https://doi.org/10.1016/S0021-9673(01)01103-7
Harmita, 2004. Petunjuk pelaksanaan validasi metode dan cara perhitungannya. Majalah Ilmu Kefarmasian. 1, 117–135. http://dx.doi.org/10.7454/psr.v1i3.3375
ISO/IEC 17025:2017, 2017. General requirements for the competence of testing and calibration laboratories
Komorowicz, -I., Barałkiewicz, -D., 2016. Determination of total arsenic and arsenic species in drinking water, surface water, wastewater, and snow from Wielkopolska, Kujawy-Pomerania, and Lower Silesia provinces, Poland. Environmental Monitoring and Assessment. 188, 504. https://doi.org/10.1007/s10661-016-5477-y
Müller, EI, Mesko, MF, Moraes, DP, Korn, M. das GA, Flores, ÉMM. 2014. 'Wet Digestion Using Microwave Heating'. Dalam EMM Flores (Ed.). Microwave-Assisted Sample Preparation for Trace Element Determination. Elsevier, USA
Narukawa, -T., Suzuki, -T., Inagaki, -K., Hioki, -A., 2014. Extraction techniques for arsenic species in rice flour and their speciation by HPLC-ICP-MS. Talanta 130, 213–220. https://doi.org/10.1016/j.talanta.2014.07.001
Nugraha, W, -C., Elishian, -C., Ketrin, -R., 2017. Determination of total arsenic in fish by hydride-generation atomic absorption spectrometry: Method validation, traceability and uncertainty evaluation. IOP Conference Series: Earth and Environmental Science. 60, 012036. https://doi.org/10.1088/1755-1315/60/1/012036
Otles, S, Ozyurt, VH. 2015. Sampling and Sample Preparation, Handbook of Food Chemistry. Springer, New York
Raber, -G., Stock, -N., Hanel, -P., Murko, -M., Navratilova, -J., Francesconi, K, -A., 2012. An improved HPLC-ICPMS method for determining inorganic arsenic in food: Application to rice, wheat and tuna fish. Food Chemistry. 134, 524–532. https://doi.org/10.1016/j.foodchem.2012.02.113
Saxena, S, -K., Karipalli, A, -R., Krishnan, A, -A., Rangasamy, -R., Malekadi, -P., Singh, D, -P., Vasu, -V., Singh, V, -K., 2017. Determination and uncertainty analysis of inorganic arsenic in husked rice by solid phase extraction and atomic absorption spectrometry with hydride generation. Journal of AOAC International. 100, 598–602. https://doi.org/10.5740/jaoacint.17-0055
Welna, -M., Szymczycha-Madeja, -A., Pohl, -P., 2015. Comparison of strategies for sample preparation prior to spectrometric measurements for determination and speciation of arsenic in rice. TrAC Trends in Analytical Chemistry. 65, 122–136. https://doi.org/10.1016/j.trac.2014.11.007
Würfels, -M., Jackwerth, -E., Stoeppler, -M., 1989. Residues from biological materials after pressure decomposition with nitric acid: Part 1. Carbon conversion during sample decomposition. Analytica Chimica Acta. 226, 1–16. https://doi.org/10.1016/S0003-2670(00)80900-9
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal