OPTIMASI PRODUKSI SENYAWA VANILIN DARI BIOKONVERSI LIGNOSELULOSA TANDAN KOSONG KELAPA SAWIT DENGAN PHANEROCHAETE CHRYSOSPORIUM MENGGUNAKAN RESPONSE SURFACE METHOD

Authors

  • Rohmah Rohmah Universitas Brawijaya
  • Sri Suhartini Universitas Brawijaya
  • Irnia Nurika Universitas Brawijaya

DOI:

https://doi.org/10.21776/ub.jtp.2021.022.03.5

Keywords:

Etil Asetat, Senyawa Aromatik, Jamur Pelapuk Putih

Abstract

ABSTRAK

 

Limbah tandan kosong kelapa sawit (TKKS) merupakan limbah hasil produksi minyak sawit yang memiliki kandungan lignoselulosa (lignin, selulosa, hemiselulosa) tinggi, dapat dimanfaatkan untuk produksi senyawa aromatik vanilin dengan menggunakan jamur Phanerochaete chrysosporium dan pelarut etil asetat. Diketahui pelarut etil asetat dan lama ekstraksi berpengaruh terhadap kadar vanilin dan yield vanilin dengan Response Surface Methode (RSM) terdiri dari 4 faktor yang digunakan untuk mengukur sejauh mana faktor-faktor tersebut saling berpengaruh terhadap kadar vanilin. Regresi terdiri dari 13 titik faktorial dengan 6 titik aksial, dan 7 titik tengah melalui softwere Design Expert 7.0.0. Faktor-faktor optimasi digabung untuk mendapatkan nilai optimum untuk menghasilkan kadar dan yield vanilin yang bagus. Hasil penelitian optimasi RSM volume pelarut etil asetat yaitu 100,36 mL dan lama ekstraksi yaitu 120,27 menit yang digunakan dalam penelitian TKKS dengan nilai validasi optimal yang didapatkan yaitu kadar vanilin mendekati hasil prediksi sebesar 0,015% dan yield vanilin sebesar 11,862 µg/g. Hasil dalam penelitian ini menunjukkan penggunaan bio-pretreatment Phanaerocaete chrysosporium sebagai biokonversi TKKS menghasilkan vanilin dapat menekan biaya besar dan meningkatkan nilai fungsi dari limbah TKKS

 

ABSTRACT

                                    

Oil palm empty fruit bunches (OPEFB) waste is a waste from palm oil production which has a high content of lignocellulose (lignin, cellulose, hemicellulose), which can be used for the production of vanillin aromatic compounds using Phanerochaete chrysosporium fungus and ethyl acetate as solvent. It is known that ethyl acetate solvent and extraction time have an effect on vanillin content and vanillin yield with the Response Surface Method (RSM) consisting of 4 factors that are used to measure the extent to which these factors influence the vanillin content. Regression consists of 13 factorial points with 6 axial points, and 7 midpoints through the Design Expert 7.0.0 software. The optimization factors were combined to obtain the optimum value to produce good vanillin content and yield. The results of the optimization research RSM volume of ethyl acetate solvent that is 100.36 mL and extraction time of 120.27 minutes used in OPEFB research with the optimal validation value obtained, namely: vanillin content is close to the predicted result of 0.015% and vanillin yield is 11.862 µg/g. The results in this study indicate that the use of phanaerocaete chrysosporium bio-pretreatment as an OPEFB bioconversion to produce vanillin can reduce high costs and increase the functional value of OPEFB waste

Author Biographies

Rohmah Rohmah, Universitas Brawijaya

Master of Agricultural Industry Technology, faculty of Agricultural Technology

Sri Suhartini, Universitas Brawijaya

Jurusan Teknologi Industri Pertanian – Fakultas Teknologi Pertanian –Universitas Brawijaya

Irnia Nurika, Universitas Brawijaya

Jurusan Teknologi Industri Pertanian – Fakultas Teknologi Pertanian –Universitas Brawijaya

References

Abdulgader, -M., Yu, -J., Zinatizadeh, A, -A., Williams, -P., Rahimi, -Z., 2018. Process analysis and optimization of single stage flexible fibre biofilm reactor treating milk processing industrial wastewater using response surface methodology (RSM). Chemical Engineering Research and Design. 149, 169–181. https://doi.org/10.1016/j.cherd.2019.07.011

Aji, -N., 2019. Pengaruh pelarut campur etil asetat dan n-heksan terhadap rendemen dan kandungan metabolit sekunder ekstrak daun bidara arab (Ziziphus sphina-christi L). Pharmacoscript. 2(2), 1–8. https://doi.org/10.36423/pharmacoscript.v2i1.222

Auras, R. 2007. 'Solubility of Gases and Vapors in Polylactide Polymers'. Dalam Letcher TM. (Ed.), Thermodynamics, Solubility and Environmental Issues. Elsevier BV, Amsterdam

Bahadar, A., Khan, MB., Asim, MA., Jalwana, K. 2015. 'Supercritical Fluid Extraction of Microalgae (Chlorella vulagaris) Biomass'. Dalam Kim SK. (Ed.), Handbook of Marine Microalgae: Biotechnology Advances. Academic Press, Cambridge, USA

Chang, S, -H., 2018. Biomass and Bioenergy bio-oil derived from palm empty fruit bunches : Fast pyrolysis, liquefaction and future prospects. Biomass and Bioenergy. 119, 263–276. https://doi.org/10.1016/j.biombioe.2018.09.033

Cicchetti, -E., Chaintreau, -A., 2009. Comparison of extraction techniques and modeling of accelerated solvent extraction for the authentication of natural vanilla flavors. Journal of Separation Science. 32(11), 1957–1964. https://doi.org/10.1002/jssc.200800650

Couto, S, -R., Moldes, -D., Sanromán, M, -A., 2006. Optimum stability conditions of pH and temperature for ligninase and manganese-dependent peroxidase from Phanerochaete chrysosporium. Application to in vitro decolorization of Poly R-478 by MnP. World Journal of Microbiology and Biotechnology. 22, 607–608. https://doi.org/10.1007/s11274-005-9078-0

Czemplik, -M., Korzun-Chłopicka, -U., Szatkowski, -M., Działo, -M., Szopa, -J., Kulma, -A., 2017. Optimization of phenolic compounds extraction from flax shives and their effect on human fibroblasts. Evidence-Based Complementary Alternative Medicine. 2017, 1-15. https://doi.org/10.1155/2017/3526392

Dewi, F, G, -U., Gapsari, -F., 2013. Optimasi parameter pembubutan terhadap kekasaran permukaan produk. Rekayasa Mesin. 4(3), 177–181

Dewi, I, -A., Ihwah, -A., Setyawan, H, -Y., Kurniasari, A, A, -N., Ulfah, -A., 2019. Optimasi proses delignifikasi pelepah pisang untuk bahan baku pembuatan kertas seni. SEBATIK. 23(2), 447–454. https://doi.org/10.46984/sebatik.v23i2.797

Do, Q, -D., Angkawijaya, A, -E., Tran-nguyen, P, -L., Huynh, L, -H., Soetaredjo, F, -A., Ismadji, -S., 2013. Effect of extraction solvent on total phenol content , total flavonoid content , and antioxidant activity of Limnophila aromatica. Journal of Food and Drug Analysis. 22(3), 296–302. https://doi.org/10.1016/j.jfda.2013.11.001

Doble, M., Kruthiventi, AK. 2007. 'Industrial Examples'. Dalam Green Chemistry and Engineering. Elsevier Science Publishing Co Inc, Oxford

Fache, -M., Boutevin, -B., Caillol, -S., 2015. Vanillin production from lignin and its use as a renewable chemical vanillin production from lignin and its use as a renewable chemical. ACS Sustainable Chemistry & Engineering. 4(1), 35-46. https://doi.org/10.1021/acssuschemeng.5b01344

Fathur, A, -R., Hendrawan, -Y., Dewi, S, -R., 2018. Optimasi nilai rendemen dalam pembuatan virgin coconut oil (VCO) menggunakan pemanasan suhu rendah dan kecepatan sentrifugasi dengan response surface methodology (RSM). Jurnal Keteknikan Pertanian Tropis dan Biosistem. 6(3), 218–228

Gunawan, E, -R., Suhendra, -D., 2010. Four-factor response surface optimization of the enzymatic synthesis of wax ester from palm kernel oil. Indonesia Journal of Chemistry. 8(1), 83–90. https://doi.org/10.22146/ijc.21653

Hocking, M, -B., 1997. Vanillin : Synthetic flavoring from spent sulfite liquor. Journal of Chemical Education. 74(9), 1055-1059. https://doi.org/10.1021/ed074p1055

Holladay, JE., White, JF., Bozell, JJ., Johnson, D. 2007. Top Value-Added Chemicals from Biomass Volume II—Results of Screening for Potential Candidates from Biorefinery Lignin. Pacific Northwest National Laboratory, USA

Hosseini, S, -E., Wahid, M, -A., 2014. Utilization of palm solid residue as a source of renewable and sustainable energy in Malaysia. Renewable Sustainable Energy Reviews. 40, 621–632. https://doi.org/10.1016/j.rser.2014.07.214

Ibrahim, M, N, -M., Nadiah, M, Y, -N., Norliyana, M, -S., Sipaut, C, -S., Shuib, -S., 2008. Separation of vanillin from oil palm empty fruit bunch lignin. Clean - Soil, Air, Water. 36, 287–291. https://doi.org/10.1002/clen.200700141

Jadhav, -D., Rekha, B, -N., Gogate, P, -R., Rathod, V, -K., 2009. Extraction of vanillin from vanilla pods : A comparison study of conventional soxhlet and ultrasound assisted extraction. Jurnal of Food Engineering. 93, 421–426. https://doi.org/10.1016/j.jfoodeng.2009.02.007

Jin, -Q., Yang, -L., Poe, -N., Huang, -H., 2018. Integrated processing of plant-derived waste to produce value-added products based on the biorefinery concept. Trends Food Science & Technology. 74, 119–131. https://doi.org/10.1016/j.tifs.2018.02.014

Kwong, ST. 2009. Biodegradation of lignin in oil palm empty fruit bunch (Efb) using ligninolytic fungi. Universitas Malaysia Serawak, Malaysia

Lun, O, -K., Wai, T, -B., Ling, L, -S., 2014. Pineapple cannery waste as a potential substrate for microbial biotransformation to produce vanillic acid and vanillin. International Food Research Journal. 21(3), 953-958.

Maitah, -M., Prochazka, -P., Pachmann, -A., Šrédl, -K., Řezbová, -H., 2016. Economics of palm oil empty fruit bunches bio briquettes in Indonesia. International Journal of Energy Economics and Policy. 6(1), 35–38

Martău, G, -A., Călinoiu, L, -F., Vodnar, D, -C., 2021. Bio-vanillin: Towards a sustainable industrial production. Trends Food Science & Technology. 109, 579–592. https://doi.org/10.1016/j.tifs.2021.01.059

Medina, J, D, -C., Woiciechowski, -A., Filho, A, -Z., Noseda, M, -D., Kaur, B, -S., Soccol, C, -R., 2015. Lignin preparation from oil palm empty fruit bunches by sequential acid/alkaline treatment - A biorefinery approach. Bioresource Technology. 194, 172–178. https://doi.org/10.1016/j.biortech.2015.07.018

Muñiz-Márquez, D, -B., Wong-Paz, J, -E., Contreras-Esquivel, J, -C., Rodriguez-Herrera, -R., Aguilar, C, -N., 2019. 'Extraction Of Phenolic Compounds From Coriandrum Sativum L. And Amaranthus Hybridus L By Microwave Technology'. Dalam Watson, RR. (Ed.), Polyphenols in Plants. Academic Press, Cambridge, USA

Myers, RH., Montgomery, DC., Anderson-Cook, CM. 2009. Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 4th Edition. John Wiley & Sons, Inc., New York

Nassiri-Mahallati, M., 2020. 'Advances in Modeling Saffron Growth and Development at Different Scales'. Dalam Koocheki, A, Khajeh-Hosseini, M. (Ed.), Saffron Science, Technology and Health. Woodhead Publishing, Cambridge

Nurika, -I., Suhartini, -S., Barker, G, -C., 2020. Biotransformation of tropical lignocellulosic feedstock using the brown rot fungus serpula lacrymans. Waste and Biomass Valorization. 11, 2689–2700. https://doi.org/10.1007/s12649-019-00581-5

Nurmiah, -S., Syarief, -R., Peranginangin, -R., Nurtama, -B., 2013. Aplikasi response surface methodology pada optimalisasi kondisi proses pengolahan alkali treated cottonii (ATC). Jurnal Pascapanen dan Bioteknologi Kelautan dan Perikanan. 8(1), 9–22.

Panwar, N, -L., Kaushik, S, -C., Kothari, -S., 2011. Role of renewable energy sources in environmental protection : A review. Renewable and Sustainable Energy Reviews. 15, 1513–1524. https://doi.org/10.1016/j.rser.2010.11.037

Piñeros-castro, -Y., Velásquez-lozano, -M., 2014. Biodegradation kinetics of oil palm empty fruit bunches by white rot fungi. International Biodeterioration & Biodegradation. 91, 24–28. https://doi.org/10.1016/j.ibiod.2014.03.009

Pintać, -D., Majkić, -T., Torović, -L., Orćić, -D., Beara, -I., Mimica-dukić, -N., Lesjak, -M., 2018. Solvent selection for efficient extraction of bioactive compounds from grape pomace. Industrial Crops and Products. 111, 379–390. https://doi.org/10.1016/j.indcrop.2017.10.038

Popescu, A, E, -P., Torralba, -J., Bonet-Ruiz, -J., Llorens, -J., 2020. Solvent screening and process simulation for vanillin production from lignin. Chemical Engineering Transactions. 81, 835–840. https://doi.org/10.3303/CET2081140

Purnamayani, R. 2013. Teknologi Pembuatan Kompos Tandan Kosong Kelapa Sawit. Badan Penelitian dan Pengembangan Pertanian, Jambi

Rahayu, D, -E., Nasarani, -D., Hadi, -W., Wrjodirjo, -B., 2018. Potential of biomass residues from oil palm agroindustry in Indonesia. MATEC Web of Conferences. 197, 1–4.

https://doi.org/10.1051/matecconf/201819713008

Ramić, -M., Vidović, -S., Zeković, -Z., Vladić, -J., Cvejin, -A., Pavlić, -B., 2015. Modeling and optimization of ultrasound-assisted extraction of polyphenolic compounds from Aronia melanocarpa by-products from filter-tea factory. Ultrasonics Sonochemistry. 23, 360–368. https://doi.org/10.1016/j.ultsonch.2014.10.002

Rangkuti, E, -M., Matondang, A, -R., Matondang, -N., 2018. Aplikasi response surface methodology (RSM) untuk mempersingkat waktu pengeringan sheet di pabrik pengolahan sheet PTPN III kebun Sarang Giting. Jurnal Sistem Teknik Industri. 18(2), 61–65. https://doi.org/10.32734/jsti.v18i2.350

Razali, W, A, -W., Baharuddin, A, -S., Talib, A, -T., Sulaiman, -A., Naim, M, -N., Hassan, M, -A., Shirai, -Y., 2012. Degradation of oil palm empty fruit bunches (OPEFB) fibre during composting process using in-vessel composter. Bioresources. 7(4), 4786-4805. https://doi.org/10.15376/biores.7.4.4786-4805

Sánchez-Camargo, A, -P., Bueno, -M., Parada-Alfonso, -F., Cifuentes, -A., Ibáñez, -E., 2019. Hansen solubility parameters for selection of green extraction solvents. TrAC Trends in Analytical Chemistry. 118, 227–237. https://doi.org/10.1016/j.trac.2019.05.046

Sarabia, LA., Ortiz, MC. 2009. 'Response Surface Methodology'. Dalam Bown SD, Tauler, R, Walczak, B. (Ed.), Comprehensive Chemometrics Chemical and Biochemical Data Analysis. Elsevier B.V., Amsterdam

Sharma, J, -L., Dhayal, -V., Sharma, R, -K., 2021. Antibacterial effect of glycerol assisted ZnO nanoparticles synthesized by white rot fungus Phanerochaete chrysosporium. Materials Today Proceedings. 43, 2855–2860. https://doi.org/10.1016/j.matpr.2021.01.075

Spigno, -G., Tramelli, -L., De Faveri, D, -M., 2007. Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. Journal Of Food Engineering. 81(1), 200–208. https://doi.org/10.1016/j.jfoodeng.2006.10.021

Suksong, -W., Tukanghan, -W., Promnuan, -K., Kongjan, -P., Reungsang, -A., Insam, -H., O-thong, -S., 2019. Biogas production from palm oil mill effluent and empty fruit bunches by coupled liquid and solid-state anaerobic digestion. Bioresource Technology. 296, 122304. https://doi.org/10.1016/j.biortech.2019.122304

Syahrul, Syarief, -R., Hermanianto, -J., Nurtama, -B., 2017. Optimasi proses penggorengan tumpi-tumpi dari ikan bandeng used response surface methodology. Jurnal Pengolahan Hasil Perikanan Indonesia. 20(3), 432–445.

Torres L, A, -Z., Woiciechowski, A, -L., Oliveira de Andrade Tanobe, -V., Zandoná Filho, -A., Alves de Freitas, -R., Noseda, M, -D., Saito Szameitat, -E., Faulds, -C., Coutinho, -P., Bertrand, -E., Soccol, C, -R., 2021. Lignin from oil palm empty fruit bunches: Characterization, biological activities and application in green synthesis of silver nanoparticles. International Journal of Biological Macromolecules. 167, 1499–1507. https://doi.org/10.1016/j.ijbiomac.2020.11.104

Zeng, -G., Yu, -M., Chen, -Y., Huang, -D., Zhang, -J., Huang, -H., Jiang, -R., Yu, -Z., 2010. Effects of inoculation with Phanerochaete chrysosporium at various time points on enzyme activities during agricultural waste composting. Bioresoure Technolology. 101(1), 222–227. https://doi.org/10.1016/j.biortech.2009.08.013

Zhang, -Y., Mo, -L., Chen,- F., Lu, -M., Dong, -W., Wang, -Q., Xu, -F., Gu, -F., 2014. Optimized production of vanillin from green vanilla pods by enzyme-assisted extraction combined with pre-freezing and thawing. Molecules. 19(2), 2181–2198. https://doi.org/10.3390/molecules19022181

Downloads

Published

2021-12-31

Issue

Section

Articles