OPTIMASI PRODUKSI SENYAWA VANILIN DARI BIOKONVERSI LIGNOSELULOSA TANDAN KOSONG KELAPA SAWIT DENGAN PHANEROCHAETE CHRYSOSPORIUM MENGGUNAKAN RESPONSE SURFACE METHOD
DOI:
https://doi.org/10.21776/ub.jtp.2021.022.03.5Keywords:
Etil Asetat, Senyawa Aromatik, Jamur Pelapuk PutihAbstract
ABSTRAK
Â
Limbah tandan kosong kelapa sawit (TKKS) merupakan limbah hasil produksi minyak sawit yang memiliki kandungan lignoselulosa (lignin, selulosa, hemiselulosa) tinggi, dapat dimanfaatkan untuk produksi senyawa aromatik vanilin dengan menggunakan jamur Phanerochaete chrysosporium dan pelarut etil asetat. Diketahui pelarut etil asetat dan lama ekstraksi berpengaruh terhadap kadar vanilin dan yield vanilin dengan Response Surface Methode (RSM) terdiri dari 4 faktor yang digunakan untuk mengukur sejauh mana faktor-faktor tersebut saling berpengaruh terhadap kadar vanilin. Regresi terdiri dari 13 titik faktorial dengan 6 titik aksial, dan 7 titik tengah melalui softwere Design Expert 7.0.0. Faktor-faktor optimasi digabung untuk mendapatkan nilai optimum untuk menghasilkan kadar dan yield vanilin yang bagus. Hasil penelitian optimasi RSM volume pelarut etil asetat yaitu 100,36 mL dan lama ekstraksi yaitu 120,27 menit yang digunakan dalam penelitian TKKS dengan nilai validasi optimal yang didapatkan yaitu kadar vanilin mendekati hasil prediksi sebesar 0,015% dan yield vanilin sebesar 11,862 µg/g. Hasil dalam penelitian ini menunjukkan penggunaan bio-pretreatment Phanaerocaete chrysosporium sebagai biokonversi TKKS menghasilkan vanilin dapat menekan biaya besar dan meningkatkan nilai fungsi dari limbah TKKS
Â
ABSTRACT
                                   Â
Oil palm empty fruit bunches (OPEFB) waste is a waste from palm oil production which has a high content of lignocellulose (lignin, cellulose, hemicellulose), which can be used for the production of vanillin aromatic compounds using Phanerochaete chrysosporium fungus and ethyl acetate as solvent. It is known that ethyl acetate solvent and extraction time have an effect on vanillin content and vanillin yield with the Response Surface Method (RSM) consisting of 4 factors that are used to measure the extent to which these factors influence the vanillin content. Regression consists of 13 factorial points with 6 axial points, and 7 midpoints through the Design Expert 7.0.0 software. The optimization factors were combined to obtain the optimum value to produce good vanillin content and yield. The results of the optimization research RSM volume of ethyl acetate solvent that is 100.36 mL and extraction time of 120.27 minutes used in OPEFB research with the optimal validation value obtained, namely: vanillin content is close to the predicted result of 0.015% and vanillin yield is 11.862 µg/g. The results in this study indicate that the use of phanaerocaete chrysosporium bio-pretreatment as an OPEFB bioconversion to produce vanillin can reduce high costs and increase the functional value of OPEFB waste
References
Abdulgader, -M., Yu, -J., Zinatizadeh, A, -A., Williams, -P., Rahimi, -Z., 2018. Process analysis and optimization of single stage flexible fibre biofilm reactor treating milk processing industrial wastewater using response surface methodology (RSM). Chemical Engineering Research and Design. 149, 169–181. https://doi.org/10.1016/j.cherd.2019.07.011
Aji, -N., 2019. Pengaruh pelarut campur etil asetat dan n-heksan terhadap rendemen dan kandungan metabolit sekunder ekstrak daun bidara arab (Ziziphus sphina-christi L). Pharmacoscript. 2(2), 1–8. https://doi.org/10.36423/pharmacoscript.v2i1.222
Auras, R. 2007. 'Solubility of Gases and Vapors in Polylactide Polymers'. Dalam Letcher TM. (Ed.), Thermodynamics, Solubility and Environmental Issues. Elsevier BV, Amsterdam
Bahadar, A., Khan, MB., Asim, MA., Jalwana, K. 2015. 'Supercritical Fluid Extraction of Microalgae (Chlorella vulagaris) Biomass'. Dalam Kim SK. (Ed.), Handbook of Marine Microalgae: Biotechnology Advances. Academic Press, Cambridge, USA
Chang, S, -H., 2018. Biomass and Bioenergy bio-oil derived from palm empty fruit bunches : Fast pyrolysis, liquefaction and future prospects. Biomass and Bioenergy. 119, 263–276. https://doi.org/10.1016/j.biombioe.2018.09.033
Cicchetti, -E., Chaintreau, -A., 2009. Comparison of extraction techniques and modeling of accelerated solvent extraction for the authentication of natural vanilla flavors. Journal of Separation Science. 32(11), 1957–1964. https://doi.org/10.1002/jssc.200800650
Couto, S, -R., Moldes, -D., Sanromán, M, -A., 2006. Optimum stability conditions of pH and temperature for ligninase and manganese-dependent peroxidase from Phanerochaete chrysosporium. Application to in vitro decolorization of Poly R-478 by MnP. World Journal of Microbiology and Biotechnology. 22, 607–608. https://doi.org/10.1007/s11274-005-9078-0
Czemplik, -M., Korzun-Chłopicka, -U., Szatkowski, -M., Działo, -M., Szopa, -J., Kulma, -A., 2017. Optimization of phenolic compounds extraction from flax shives and their effect on human fibroblasts. Evidence-Based Complementary Alternative Medicine. 2017, 1-15. https://doi.org/10.1155/2017/3526392
Dewi, F, G, -U., Gapsari, -F., 2013. Optimasi parameter pembubutan terhadap kekasaran permukaan produk. Rekayasa Mesin. 4(3), 177–181
Dewi, I, -A., Ihwah, -A., Setyawan, H, -Y., Kurniasari, A, A, -N., Ulfah, -A., 2019. Optimasi proses delignifikasi pelepah pisang untuk bahan baku pembuatan kertas seni. SEBATIK. 23(2), 447–454. https://doi.org/10.46984/sebatik.v23i2.797
Do, Q, -D., Angkawijaya, A, -E., Tran-nguyen, P, -L., Huynh, L, -H., Soetaredjo, F, -A., Ismadji, -S., 2013. Effect of extraction solvent on total phenol content , total flavonoid content , and antioxidant activity of Limnophila aromatica. Journal of Food and Drug Analysis. 22(3), 296–302. https://doi.org/10.1016/j.jfda.2013.11.001
Doble, M., Kruthiventi, AK. 2007. 'Industrial Examples'. Dalam Green Chemistry and Engineering. Elsevier Science Publishing Co Inc, Oxford
Fache, -M., Boutevin, -B., Caillol, -S., 2015. Vanillin production from lignin and its use as a renewable chemical vanillin production from lignin and its use as a renewable chemical. ACS Sustainable Chemistry & Engineering. 4(1), 35-46. https://doi.org/10.1021/acssuschemeng.5b01344
Fathur, A, -R., Hendrawan, -Y., Dewi, S, -R., 2018. Optimasi nilai rendemen dalam pembuatan virgin coconut oil (VCO) menggunakan pemanasan suhu rendah dan kecepatan sentrifugasi dengan response surface methodology (RSM). Jurnal Keteknikan Pertanian Tropis dan Biosistem. 6(3), 218–228
Gunawan, E, -R., Suhendra, -D., 2010. Four-factor response surface optimization of the enzymatic synthesis of wax ester from palm kernel oil. Indonesia Journal of Chemistry. 8(1), 83–90. https://doi.org/10.22146/ijc.21653
Hocking, M, -B., 1997. Vanillin : Synthetic flavoring from spent sulfite liquor. Journal of Chemical Education. 74(9), 1055-1059. https://doi.org/10.1021/ed074p1055
Holladay, JE., White, JF., Bozell, JJ., Johnson, D. 2007. Top Value-Added Chemicals from Biomass Volume II—Results of Screening for Potential Candidates from Biorefinery Lignin. Pacific Northwest National Laboratory, USA
Hosseini, S, -E., Wahid, M, -A., 2014. Utilization of palm solid residue as a source of renewable and sustainable energy in Malaysia. Renewable Sustainable Energy Reviews. 40, 621–632. https://doi.org/10.1016/j.rser.2014.07.214
Ibrahim, M, N, -M., Nadiah, M, Y, -N., Norliyana, M, -S., Sipaut, C, -S., Shuib, -S., 2008. Separation of vanillin from oil palm empty fruit bunch lignin. Clean - Soil, Air, Water. 36, 287–291. https://doi.org/10.1002/clen.200700141
Jadhav, -D., Rekha, B, -N., Gogate, P, -R., Rathod, V, -K., 2009. Extraction of vanillin from vanilla pods : A comparison study of conventional soxhlet and ultrasound assisted extraction. Jurnal of Food Engineering. 93, 421–426. https://doi.org/10.1016/j.jfoodeng.2009.02.007
Jin, -Q., Yang, -L., Poe, -N., Huang, -H., 2018. Integrated processing of plant-derived waste to produce value-added products based on the biorefinery concept. Trends Food Science & Technology. 74, 119–131. https://doi.org/10.1016/j.tifs.2018.02.014
Kwong, ST. 2009. Biodegradation of lignin in oil palm empty fruit bunch (Efb) using ligninolytic fungi. Universitas Malaysia Serawak, Malaysia
Lun, O, -K., Wai, T, -B., Ling, L, -S., 2014. Pineapple cannery waste as a potential substrate for microbial biotransformation to produce vanillic acid and vanillin. International Food Research Journal. 21(3), 953-958.
Maitah, -M., Prochazka, -P., Pachmann, -A., Šrédl, -K., Řezbová, -H., 2016. Economics of palm oil empty fruit bunches bio briquettes in Indonesia. International Journal of Energy Economics and Policy. 6(1), 35–38
Martău, G, -A., Călinoiu, L, -F., Vodnar, D, -C., 2021. Bio-vanillin: Towards a sustainable industrial production. Trends Food Science & Technology. 109, 579–592. https://doi.org/10.1016/j.tifs.2021.01.059
Medina, J, D, -C., Woiciechowski, -A., Filho, A, -Z., Noseda, M, -D., Kaur, B, -S., Soccol, C, -R., 2015. Lignin preparation from oil palm empty fruit bunches by sequential acid/alkaline treatment - A biorefinery approach. Bioresource Technology. 194, 172–178. https://doi.org/10.1016/j.biortech.2015.07.018
Muñiz-Márquez, D, -B., Wong-Paz, J, -E., Contreras-Esquivel, J, -C., Rodriguez-Herrera, -R., Aguilar, C, -N., 2019. 'Extraction Of Phenolic Compounds From Coriandrum Sativum L. And Amaranthus Hybridus L By Microwave Technology'. Dalam Watson, RR. (Ed.), Polyphenols in Plants. Academic Press, Cambridge, USA
Myers, RH., Montgomery, DC., Anderson-Cook, CM. 2009. Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 4th Edition. John Wiley & Sons, Inc., New York
Nassiri-Mahallati, M., 2020. 'Advances in Modeling Saffron Growth and Development at Different Scales'. Dalam Koocheki, A, Khajeh-Hosseini, M. (Ed.), Saffron Science, Technology and Health. Woodhead Publishing, Cambridge
Nurika, -I., Suhartini, -S., Barker, G, -C., 2020. Biotransformation of tropical lignocellulosic feedstock using the brown rot fungus serpula lacrymans. Waste and Biomass Valorization. 11, 2689–2700. https://doi.org/10.1007/s12649-019-00581-5
Nurmiah, -S., Syarief, -R., Peranginangin, -R., Nurtama, -B., 2013. Aplikasi response surface methodology pada optimalisasi kondisi proses pengolahan alkali treated cottonii (ATC). Jurnal Pascapanen dan Bioteknologi Kelautan dan Perikanan. 8(1), 9–22.
Panwar, N, -L., Kaushik, S, -C., Kothari, -S., 2011. Role of renewable energy sources in environmental protection : A review. Renewable and Sustainable Energy Reviews. 15, 1513–1524. https://doi.org/10.1016/j.rser.2010.11.037
Piñeros-castro, -Y., Velásquez-lozano, -M., 2014. Biodegradation kinetics of oil palm empty fruit bunches by white rot fungi. International Biodeterioration & Biodegradation. 91, 24–28. https://doi.org/10.1016/j.ibiod.2014.03.009
Pintać, -D., Majkić, -T., Torović, -L., Orćić, -D., Beara, -I., Mimica-dukić, -N., Lesjak, -M., 2018. Solvent selection for efficient extraction of bioactive compounds from grape pomace. Industrial Crops and Products. 111, 379–390. https://doi.org/10.1016/j.indcrop.2017.10.038
Popescu, A, E, -P., Torralba, -J., Bonet-Ruiz, -J., Llorens, -J., 2020. Solvent screening and process simulation for vanillin production from lignin. Chemical Engineering Transactions. 81, 835–840. https://doi.org/10.3303/CET2081140
Purnamayani, R. 2013. Teknologi Pembuatan Kompos Tandan Kosong Kelapa Sawit. Badan Penelitian dan Pengembangan Pertanian, Jambi
Rahayu, D, -E., Nasarani, -D., Hadi, -W., Wrjodirjo, -B., 2018. Potential of biomass residues from oil palm agroindustry in Indonesia. MATEC Web of Conferences. 197, 1–4.
https://doi.org/10.1051/matecconf/201819713008
Ramić, -M., Vidović, -S., Zeković, -Z., Vladić, -J., Cvejin, -A., Pavlić, -B., 2015. Modeling and optimization of ultrasound-assisted extraction of polyphenolic compounds from Aronia melanocarpa by-products from filter-tea factory. Ultrasonics Sonochemistry. 23, 360–368. https://doi.org/10.1016/j.ultsonch.2014.10.002
Rangkuti, E, -M., Matondang, A, -R., Matondang, -N., 2018. Aplikasi response surface methodology (RSM) untuk mempersingkat waktu pengeringan sheet di pabrik pengolahan sheet PTPN III kebun Sarang Giting. Jurnal Sistem Teknik Industri. 18(2), 61–65. https://doi.org/10.32734/jsti.v18i2.350
Razali, W, A, -W., Baharuddin, A, -S., Talib, A, -T., Sulaiman, -A., Naim, M, -N., Hassan, M, -A., Shirai, -Y., 2012. Degradation of oil palm empty fruit bunches (OPEFB) fibre during composting process using in-vessel composter. Bioresources. 7(4), 4786-4805. https://doi.org/10.15376/biores.7.4.4786-4805
Sánchez-Camargo, A, -P., Bueno, -M., Parada-Alfonso, -F., Cifuentes, -A., Ibáñez, -E., 2019. Hansen solubility parameters for selection of green extraction solvents. TrAC Trends in Analytical Chemistry. 118, 227–237. https://doi.org/10.1016/j.trac.2019.05.046
Sarabia, LA., Ortiz, MC. 2009. 'Response Surface Methodology'. Dalam Bown SD, Tauler, R, Walczak, B. (Ed.), Comprehensive Chemometrics Chemical and Biochemical Data Analysis. Elsevier B.V., Amsterdam
Sharma, J, -L., Dhayal, -V., Sharma, R, -K., 2021. Antibacterial effect of glycerol assisted ZnO nanoparticles synthesized by white rot fungus Phanerochaete chrysosporium. Materials Today Proceedings. 43, 2855–2860. https://doi.org/10.1016/j.matpr.2021.01.075
Spigno, -G., Tramelli, -L., De Faveri, D, -M., 2007. Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. Journal Of Food Engineering. 81(1), 200–208. https://doi.org/10.1016/j.jfoodeng.2006.10.021
Suksong, -W., Tukanghan, -W., Promnuan, -K., Kongjan, -P., Reungsang, -A., Insam, -H., O-thong, -S., 2019. Biogas production from palm oil mill effluent and empty fruit bunches by coupled liquid and solid-state anaerobic digestion. Bioresource Technology. 296, 122304. https://doi.org/10.1016/j.biortech.2019.122304
Syahrul, Syarief, -R., Hermanianto, -J., Nurtama, -B., 2017. Optimasi proses penggorengan tumpi-tumpi dari ikan bandeng used response surface methodology. Jurnal Pengolahan Hasil Perikanan Indonesia. 20(3), 432–445.
Torres L, A, -Z., Woiciechowski, A, -L., Oliveira de Andrade Tanobe, -V., Zandoná Filho, -A., Alves de Freitas, -R., Noseda, M, -D., Saito Szameitat, -E., Faulds, -C., Coutinho, -P., Bertrand, -E., Soccol, C, -R., 2021. Lignin from oil palm empty fruit bunches: Characterization, biological activities and application in green synthesis of silver nanoparticles. International Journal of Biological Macromolecules. 167, 1499–1507. https://doi.org/10.1016/j.ijbiomac.2020.11.104
Zeng, -G., Yu, -M., Chen, -Y., Huang, -D., Zhang, -J., Huang, -H., Jiang, -R., Yu, -Z., 2010. Effects of inoculation with Phanerochaete chrysosporium at various time points on enzyme activities during agricultural waste composting. Bioresoure Technolology. 101(1), 222–227. https://doi.org/10.1016/j.biortech.2009.08.013
Zhang, -Y., Mo, -L., Chen,- F., Lu, -M., Dong, -W., Wang, -Q., Xu, -F., Gu, -F., 2014. Optimized production of vanillin from green vanilla pods by enzyme-assisted extraction combined with pre-freezing and thawing. Molecules. 19(2), 2181–2198. https://doi.org/10.3390/molecules19022181
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal