PENGARUH BIOPRIMING DAN BIOFERTILIZER MENGGUNAKAN Trichoderma asperellum DAN Trichoderma virens TERHADAP SENYAWA BIOAKTIF KACANG TUNGGAK

Authors

  • Nabilah Mei Wulandari Universitas Brawijaya
  • Eriyanto Yusnawan Balai Penelitian Tanaman Aneka Kacang dan Umbi
  • Tri Dewanti Widyaningsih Universitas Brawijaya

DOI:

https://doi.org/10.21776/ub.jtp.2022.023.03.4

Keywords:

Biofertilizer; Biopriming; Kacang Tunggak; Senyawa Bioaktif; Trichoderma spp.

Abstract

          Kurang Energi Protein (KEP) tidak hanya menyebabkan cadangan protein menurun, melainkan juga menurunkan sistem imun. Hal ini berdampak pada rendahnya produksi antibodi, sehingga partikel radikal bebas sulit tereliminasi dan tubuh rentan terkena infeksi. Maka dari itu, perlu senyawa antioksidan yang dapat memperkuat sistem imun. Tanaman obat, rempah-rempah, serta aneka kacang potensial (kedelai dan kacang hijau) banyak dimanfaatkan untuk meningkatkan senyawa antioksidan dalam tubuh. Namun, produktivitasnya fluktuatif dan sulit dibudidayakan di lahan kering. Kacang tunggak KT-6 dapat dijadikan sebagai sumber daya alternatif karena mengandung senyawa bioaktif yang tinggi, mudah dibudidayakan, dan dapat tumbuh di lahan kurang produktif. Kelemahan yang terdapat pada kacang tunggak berupa rendahnya aktivitas antioksidan, sehingga penelitian ini dilakukan dengan tujuan untuk meningkatkannya dengan memanfaatkan Trichoderma asperellum (T. asp) dan Trichoderma virens (T. vir) sebagai elisitor untuk menginduksi aktivitas enzim antioksidan tanaman. Pada penelitian ini, kedua fungi diaplikasikan dengan perendaman (biopriming) dan penaburan biofertilizer yang telah diperkaya isolat Trichoderma. Hasil penelitian menunjukkan kandungan senyawa fenolik dan flavonoid serta aktivitas antioksidan tertinggi diperoleh pada perlakuan aplikasi biofertilizer berbahan konsorsium Trichoderma (T. asp + T. vir). Kelompok senyawa penyusun biji KT-6 dengan perlakuan tersebut lebih beragam dibandingkan biji tanpa perlakuan. Senyawa tertinggi pada biji KT-6 terinduksi Trichoderma adalah asam sitrat (4,75%), sedangkan pada biji KT-6 kontrol adalah Phthalazin-1(2H)-one, 2-(4-iodophenyl)-4-methyl- (5,42%). Senyawa fenolik dan flavonoid berkontribusi sangat kuat terhadap aktivitas antioksidan biji kacang tunggak KT-6

          Protein-energy malnutrition (PEM) not only decreases protein reserves but also lowers the immune system. This has an impact on the low production of antibodies so that free radical particles are difficult to eliminate, and the body is susceptible to infection. Therefore, it needs antioxidant compounds that can strengthen the immune system. Medicinal plants, spices, and various potential nuts (soybeans and mung beans) are widely used to increase antioxidant compounds in the body. However, its productivity is unstable and difficult to cultivate on dry land. Cowpea of KT-6 can be used as an alternative because it contains high bioactive compounds, is easily cultivated, and can grow in less productive land. However, its antioxidant activity is low, so this study was conducted to increase it by utilizing T. asperellum (T. asp) and T. virens (T. vir) capable of producing elicitors as inducers of antioxidant enzyme activity of plants. In this study, both fungi were applied by immersion (biopriming) and biofertilizer sowing that has been mixed with Trichoderma isolates. The results showed the content of phenolic compounds and flavonoids compounds as well as the highest antioxidant activity obtained in biofertilizer application treatment made from Trichoderma consortium (T. asp + T. vir). The group of compounds that make up KT-6 seeds with such treatment is more diverse than the control seeds. The highest compound in Trichoderma-induced KT-6 seeds was citric acid (4.75%), while in control KT-6 seeds were Phthalazine-1(2H)-one, 2-(4-iodophenyl)-4-methyl- (5.42%). Phenolic compounds and flavonoids contribute very strongly to the antioxidant activity of KT-6 cowpea seeds.

Author Biographies

Nabilah Mei Wulandari, Universitas Brawijaya

Departemen Ilmu Pangan dan Bioteknologi, Fakultas Teknologi Pertanian

Eriyanto Yusnawan, Balai Penelitian Tanaman Aneka Kacang dan Umbi

Balai Penelitian Tanaman Aneka Kacang dan Umbi

Tri Dewanti Widyaningsih, Universitas Brawijaya

Departemen Ilmu Pangan dan Bioteknologi, Fakultas Teknologi Pertanian

References

Chandra, -R. 1997. Nutrition and the immune system: an introductionn 3. Journal of Clinical Nutrition. 66(2), 460–463. https://doi.org/10.1093/ajcn/66.2.460S

Chepsergon, -J., Mwamburi, -L., Kassim, M, -K. 2014. Mechanism of drought tolerance in plants using Trichoderma spp. International Journal of Science and Research. 3(11), 1592–1595. https://www.ijsr.net/archive/v3i11/T0NUMTQ1MzE=.pdf

Choi, E, -S., Sukweenadhi, -J., Kim, Y, -J., Jung, K, -H., Koh, S, -C., Hoang, V, -A., Yang, D, -C. 2016. The effects of rice seed dressing with Paenibacillus yonginensis and silicon on crop development on South Korea’s reclaimed tidal land. Field Crops Research. 188, 121–132. https://doi.org/10.1016/j.fcr.2016.01.005

Hakim, L. 2016. Rempah Dan Herba Kebun-Pekarangan Rumah Masyarakat: Keragaman, Sumber Fitofarmaka dan Wisata Kesehatan-kebugaran, 1st ed. Diandra Creative. Yogyakarta

Halifu, -S., Deng, -X., Song, -X., Song, -R. 2019. Effects of two Trichoderma strains on plant growth, rhizosphere soil nutrients, and fungal community of Pinus sylvestris var. mongolica annual seedlings. Forests. 10(9), 1–17. https://doi.org/10.3390/f10090758

Huang, -X., Chen, -L., Ran, -W., Shen, -Q., Yang, -X. 2011. Trichoderma harzianum strain SQR-T37 and its bio-organic fertilizer could control Rhizoctonia solani damping-off disease in cucumber seedlings mainly by the mycoparasitism. Applied Microbial and Cell Physiology. 91, 741–755. https://doi.org/10.1007/s00253-011-3259-6

Inayati, -A., Sulistyowati, -L., Aini, L, -Q., Yusnawan, -E. 2020. Trichoderma virens-tv4 enhances growth promoter and plant defense-related enzymes of mungbean (Vigna radiata) against soil-borne pathogen Rhizoctonia solani. Biodiversitas. 21(6), 2410–2419. https://doi.org/10.13057/biodiv/d210611

Ji, -S., Liu, -Z., Liu, -B., Wang, -Y., Wang, -J. 2020. The effect of Trichoderma biofertilizer on the quality of flowering Chinese cabbage and the soil environment. Scientia Horticulturae. 262, 1-8. https://doi.org/10.1016/j.scienta.2019.109069

Kaihatu, S. 2007. Tanaman rempah dan obat sumber pangan fungsional. Prosiding Seminar Nasional Akselerasi Inovasi Teknologi Pertanian Spesifik Lokasi Mendukung Ketahanan Pangan Di Wilayah Kepulauan. BPTP Maluku - Pemda Prov. Maluku - Universitas Pattimura, Ambon, pp. 554–560.

Khang, D, -T., Dung, T, -N., Elzaawely, A, -A., Xuan, T, -D. 2016. Phenolic profiles and antioxidant activity of germinated legumes. Foods. 5(2), 27–37. https://doi.org/10.3390/foods5020027

Kumar, S., Abedin, Md, M., Singh, AK., Das, S. 2020. Role of Phenolic Compounds in Plant-Defensive Mechanisms. Springer. Singapore. https://doi.org/10.1007/978-981-15-4890-1_22

Lee, J, -H., Jeon, J, -K., Kim, S, -G., Kim, S, -H., Chun, -T., Imm, J, -Y. 2011. Comparative analyses of total phenols, flavonoids, saponins and antioxidant activity in yellow soybeans and mung beans International Journal of Food Science & Technology. 46(12), 2513–2519. https://doi.org/10.1111/j.1365-2621.2011.02775.x

Mahatma, M, -K., Thawait, L, -K., Jadon, K, -S., Thirumalaisamy, P, -P., Bishi, S, -K., Jadav, J, -K., Khatediya, -N., Golakiya, B, -A. 2018. Metabolic profiles of groundnut (Arachis hypogaea L.) genotypes differing in Sclerotium rolfsii reaction. European Journal of Plant Pathology. 151, 463–474. https://doi.org/10.1007/s10658-017-1387-2

Maligan, J, -M., Marditia, A, -P., Putri, W, D, -R. 2015. Analisis senyawa bioaktif ekstrak mikroalga laut Tetraselmis chuii sebagai sumber antioksidan alami. Jurnal Rekapangan. 9(2), 1–10. http://ejournal.upnjatim.ac.id/index.php/teknologi-pangan/article/view/508/403

Pascale, -A., Vinale, -F., Manganiello, -G., Nigro, -M., Lanzuise, -S., Ruocco, -M., Marra, -R., Lombardi, -N., Woo, S, -L., Lorito, M. 2017. Trichoderma and its secondary metabolites improve yield and quality of grapes. Crop Protection. 92, 176–181. https://doi.org/10.1016/j.cropro.2016.11.010

Purwanty, E., Djatmiko, R., Prihanta, W. 2019. Kacang Potensial (Keanekaragaman, Konservasi, dan Pemanfaatan), 1st ed. UMM Press. Malang

Rahman, M, -M., Islam, M, -B., Biswas, -M., Khurshid Alam, A, H, -M. 2015. In vitro antioxidant and free radical scavenging activity of different parts of Tabebuia pallida growing in Bangladesh. BMC Research Notes. 8, 1–9. https://doi.org/10.1186/s13104-015-1618-6

Rocha, -I., Ma, -Y., Souza-Alonso, -P., Vosátka, -M., Freitas, -H., Oliveira, R, -S. 2019. Seed coating: a tool for delivering beneficial microbes to agricultural crops. Frontiers in Plant Science. 10, 1–16. https://doi.org/10.3389/fpls.2019.01357

Sayekti, R, -S., Prajitno, -D., Toekidjo. 2012. Karakterisasi delapan aksesi kacang tunggak (Vigna unguiculata {L.} Walp) asal Daerah Istimewa Yogyakarta. Jurnal Penelitian Vegetalika. 1(1), 1–10. https://doi.org/10.22146/veg.1379

Seltman, HJ, 2018. Experimental Design and Analysis. Carnegie Mellon University. Pittsburg

Shoresh, -M., Harman, G, -E., Mastouri, -F. 2010. Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology. 48, 21–43. https://doi.org/10.1146/annurev-phyto-073009-114450

Sood, -M., Kapoor, -D., Kumar, -V., Sheteiwy, M, -S., Ramakrishnan, -M., Landi, -M., Araniti, -F., Sharma, -A. 2020. Trichoderma: The “secrets” of a multitalented biocontrol agent. Plants. 9(6), 1-25. https://doi.org/10.3390/plants9060762

Vogt, -T. 2010. Phenylpropanoid biosynthesis. Molecular Plant. 3(1), 2–20. https://doi.org/10.1093/mp/ssp106

Yedidia, -I., Shoresh, -M., Kerem, -Z., Benhamou, -N., Kapulnik, -Y., Chet, -I. 2003. Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in Cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Applied and Environmental Microbiology. 69(12), 7343–7353. https://doi.org/10.1128/AEM.69.12.7343-7353.2003

Yusnawan, -E. 2018. Effects of different extraction methods on total phenolic content and antioxidant activity in soybean cultivars. IOP Conference Series: Earth and Environmental Science. 102, 1–10. https://doi.org/10.1088/1755-1315/102/1/012039

Yusnawan, -E. 2016. The diversity of secondary metabolites in Indonesian soybean genotypes. Biodiversitas. 17(2), 704–710. https://doi.org/10.13057/biodiv/d17024

Yusnawan, -E., Inayati, -A., Baliadi, -Y. 2021. Total phenolic content and antioxidant activity in eight cowpea (Vigna unguiculata) genotypes. IOP Conference Series: Earth and Environmental Science. 924, 1–6. https://doi.org/10.1088/1755-1315/924/1/012047

Downloads

Published

2022-12-30

Issue

Section

Articles