DETEKSI PEMALSUAN KOPI LUWAK MENGGUNAKAN SIFAT BIOLISTRIK DAN JARINGAN SARAF TIRUAN

Shinta Widyaningtyas, Sucipto Sucipto, Yusuf Hendrawan

Abstract


Metode konvensional deteksi pemalsuan kopi luwak menggunakan analisis kimia bersifat destruktif, mahal, membutuhkan preparasi sampel dan waktu lama. Perancangan alat sederhana, cepat, akurat, dan non destruktif berdasarkan sifat biolistrik berpeluang untuk mendeteksi pemalsuan kopi luwak. Penelitian ini bertujuan mendapat topologi Jaringan Saraf Tiruan (JST) terbaik untuk mendeteksi pemalsuan kopi luwak menggunakan input sifat biolistrik berdasarkan total fenol, pH, dan persentase pemalsuan kopi luwak. Hasil penelitian menunjukkan bahwa impedansi, resistansi seri, resistansi paralel berbanding terbalik dengan frekuensi, induktansi seri dan induktansi paralel berbanding lurus dengan frekuensi. Topologi JST terpilih yaitu (5-40-40-3) memiliki MSE pelatihan 0.0099 dan MSE validasi 0,0479. Hasil penelitian menunjukkan sifat biolistrik dan JST berpotensi sebagai sensor mendeteksi pemalsuan kopi luwak.


Keywords


Akurasi; Biolistrik; Jaringan Saraf Tiruan; Kopi Luwak; Pemalsuan

Full Text:

PDF

References


Marcone, M. F. 2004. Composition and Properties of Indonesian Palm Civet Coffee (Kopi Luwak) and Ethiopian Civet Coffee. Food Research International. vol. 37, 901-912

Ongo, E., M. Falasconi., G. Sberveglieri., A. Antonelli., G. Montevecchi., V. Sberveglieri., I. Concina., F. Sevilla III. 2012. Chemometric Discrimination of Phillipine Civet Coffee using Electronic Nose and Gas Chromatography Mass Spectrometry. Proc. Eurosensrs XXVI, Krakow Polandia, vol. 47, pp. 977-980

Jumhawan, U., Putri S. P., Yusianto., Marwani E., Bamba T., Fukusaki E. 2013. Selection of Discriminant Markers for Aunthetication of Asian Palm Civet Coffee (Kopi Luwak) : A Metabolomics Approach. J Agric Food Chem. vol. 61 no.33, pp. 7994-8001

Suhandy, D., Meinilwita Y. 2017. The Use of Partial Least Square Regression and Spectral Data in UV-Visible Region for Quantification of Adulteration in Indonesian Palm Civet Coffee. International Journal of Food Science. pp. 1-7

Kalit, M. T., Ksenija M., Samir K., Nada V., Jasmina H. 2014. Application of Electronic Nose and Electronic Tongue in the Dairy Industry. Mljekarstvo. vol. 64, no.4, pp. 228-244.

Giraldez, M.C ., Patricia B., Fidel T., Pedro F. 2010. Low-Frequency Dielectric Spectrum to Determine Pork Meat Quality. Innovative Food Science and Emerging Technologies. vol. 11, pp. 376-386.

Alfaifi, B., Shaojin T., Juming T., Barbara R., Shyam S., Yang J. 2013. Radio Frequency Dusunfestation Treatments for Dried Fruit: Dielectric Properties. LWT-Food Science and Technology. vol. 50, 746-754.

Franco, A. P., Leticia Y. Y., Carmen C. T., Jorge A. W. G. 2015. Dielectric Properties of Green Coconut Water Relevant to Microwave Processing: Effect of Temperature and Field Frequency. Journal of Food Engineering. vol. 155, pp. 69-78.

Yang, J., K. S. Zhao., Y. J. He. 2016. Quality Evaluation of Frying Oil Deterioration by Dielectric Spectroscopy. Journal of Food Engineering. vol. 180, pp. 69-76.

Ozturk, S., Fanbin K., Samir T., Rakesh K. S. 2016. Dielectric Properties of Dried Vegetable Powders and their Temperature Profile during Radio Frequency Heating. Journal of Food Engineering. vol. 169, pp. 91-100.

Nakonieczna, A., Bartosz P., Andrzej W., Agnieszka S., Wojciech S. 2016. Eletrical Impedance Measurements for Detectiong Artificial Chemical Additives in Liqid Food Products. Food Control. vol. 66, pp. 116-129.

Sudha, L., R. Dillibabu., S. Srivatna S., A. Annamalai. 2016. Optimization of Process Parameters in Feed Manufacturing using Artificial Neural Network. Computers and Electronis in Agriculture. vol. 120, pp. 1-6.

Cheong, M. W., Kau H. T.,Jerem J. M. O., Shao Q. L., Phillip C., Bin Y. 2013. Volatile Composition and Antioxidant Capacity of Arabica Coffee. Food Research International. vol. 51, pp. 388-396.

Kementrian Perdagangan Republik Indonesia. 2013. Warta Ekspor Pesona Kopi Luwak. Kementrian Perdagangan Republik Indonesia, Jakarta.

Indonesian Trade Promotion Center Vancouver. 2016. Peluang Ekspor Produk Kopi di Pasar Kanada. Indonesian Trade Promotion Center Vancouver, Vancouver.

Icier, F., Baysal T. 2004. Dielectric Properties of Food Materials-2: Measurement Techniques. Critical Reviews in Food Science and Nutrition. vol. 44, pp. 473-478.

Nelson, S. O., & Trabelsi, S. 2012. Factors Influencing the Dielectric Properties of Agricultural and Food Products. Journal of Microwave Power and Electromagnetic Energy. vol. 46, no. 2, pp. 93-107.

Juansah, J. 2013. Kajian Spektroskopi Impedansi Listrik untuk Evaluasi Kualitas Buah Jeruk Keprok Garut Secara Nondestruktif. Disertasi Doktor. IPB. Bogor.

Kertesz, A., Zuzana H., Eszter v. Lenka S. 2015. Relationship between Moisture Content and Electrical Impedance of Carrot Slices during Drying. International Agrophysics. vol. 29, pp. 61-66.

Barsoukov E, Macdonald J.R. 2005. Impedance Spectroscopy: Theory, Experiment and Applications. John Wiley and Sons Inc, USA.

Wu L, Ogawa Y, Tagawa A. 2008. Electrical Impedance Spectroscopy Analysis of Eggplant Pulp and Effects of Drying and Freezing–Thawing Treatments on its Impedance Characteristics. Journal of Food Engineering. vol. 87, pp. 274–280.

Vozary E, Benko P. 2010. Non-Destructive Determination of Impedance Spectrum of Fruit Flesh Under the Skin. Journal of Physics, Conference Series.

Hayt, W. H., John A. B. 2006. Elektromagnetika Edisi Ketujuh. Erlangga, Jakarta.

Carelli, M. L. C., Lopes C. R. O., Monaco, L. C. 1974. Chlorogenic Acid Content in Species of Coffea and Selections of Arabica. Turrialba. vol. 24, pp. 398-401.

Clifford, M.N., Wight J. (1976. The Measurement of Feruloylquinic Acids and Cafeoilquinic Acuds in Coffee Beans Development of the Technique and its Preliminary Application to Green Coffee Beans. J. Sci. Food Agric. vol. 27, pp. 73-84.

Trugo, L. C.., Macrae R. 1984. A Study OF THE Effect of Roasting on the Chlorogenic Acid Composition of Coffee using HPLC. Food Chem. vol. 15, pp. 219-227.

Variyar, P. S., Ahmad R., Bhat R., Niyas Z., Sharma A. 2003. Flavoring Components of Raw Monsooned Arabica Coffee and Their Changes during Radiation Processing. J. Agric. Food. Chem. vol. 51, pp. 7945-7950.

Farah, A., Carmen M. D., 2006. Phenolic Compound in Coffee. Braz. J. Plant Physicol. vol. 18, no. 1, pp. 23-36.

Torrecilla, J.S., L. Otero., P.D. Sanz. 2007. Optimization of an Artificial Neural Network for Thermal/Pressure Food Processing: Evaluation of Training Algorithms. Computer and Electronic in Agriculture. vol. 56, pp. 101-110.

Sharma, B., Venugopulan. 2014, Comparison of Neural Netwrok Training Functions for Hematoma Classification in Brain CT Images. IOSR Journal of Computer Engineering. vol. 16, no. 1, pp. 31-35.

Aggarwal, R., Rajendra K. 2015. Effect of Training Function of Artificial Neural Networks (ANN) on Time Series Forecasting. International Journal of Computer Applications. vol. 109, no. 3, pp. 14-17.

Adeoti, O. A., Peter A. O. 2013. Effect of Training Algorithms on the Performance of ANN for Pattern Recognition of Bivariate Process. International Journal of Computer Applications. vol. 69, no. 20, pp. 8-12.

Li, X., Feng C., Dongmei C., Minfang T. 2015. Predicting Menopausal Symptoms with Artificial Neural Network. Expert Systems With Applications. vol. 42, pp. 8698-8706.

Chang, C. L., Chung S. L. 2012. Parameter Sensitivity Analysis of Artificial Neural Network for Predicting Water Turbidity. International Journal of Environmental, Chemical, Ecological, Geological, and Geophysical Engineering. vol. 6, no. 10, pp. 657-660.

Panchal, F. S., Mahesh P. 2014. Review on Method of Selecting Number of Hidden Nodes in Artificial Neural Network. Inernational Journal of Computer Science and Mobile Computing. vol. 3, no. 11, pp. 455-464.

Karsoliya, Saurabh. 2012. Approximating Number Of Hidden Layer Neuron In Multiple Hidden Layer BPNN Architecture. International Journal Of




DOI: http://dx.doi.org/10.21776/ub.jtp.2018.019.03.3

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Jurnal Teknologi Pertanian

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.