KARAKTERISTIK ORGANOLEPTIK DAN KANDUNGAN BETA-GLUKAN TEMPE KEDELAI DENGAN PENAMBAHAN SACCHAROMYCES CEREVISIAE

Samsul Rizal, Maria Erna Kustyawati

Abstract


ABSTRAK


Kapang, R. oligosporus merupakan mikroba utama yang berperan dalam fermentasi tempe. Penambahan khamir selama fermentasi tempe mempengaruhi kandungan aroma tempe dan diduga menghasilkan beta-glukan dalam tempe. Penelitian ini bertujuan untuk mengetahui pengaruh
penambahan Saccharomyces cerevisiae terhadap sifat organoleptik dan kandungan betaglukan pada tempe. Perlakuan terdiri dari 2 faktor yaitu konsentrasi S. cerevisiae yang terdiri dari 1% dan 3%, perlakuan kedua adalah cara pemasakan terdiri dari 2 taraf yaitu tempe digoreng dan dikukus. Sebagai kontrol dilakukan pengamatan terhadap tempe mentah. Pengujian organoleptik, sampel tempe diambil 15 g lalu dimasak sesuai perlakuan kemudian diamati secara organoleptik dengan uji skoring menggunakan 25 orang panelis. Data dianalisis dengan sidik ragam untuk mendapat penduga ragam galat dan uji signifikansi untuk mengetahui pengaruh antar perlakuan. Perbedaan antar perlakuan dianalisis menggunakan Duncan Multiple Range Test (DMRT) pada taraf 5% untuk pengamatan terhadap sifat organoleptik tempe. Pengamatan sifat organoleptik dilakukan terhadap aroma langu, aroma khas tempe, rasa asam dan rasa pahit, dan penerimaan keseluruhan tempe. Hasil penelitian menunjukkan tempe yang dibuat dengan penambahan S. cerevisiae 1% dan digoreng memiliki sifat organoleptik terbaik, yakni aroma khas tempe, bau langu lebih rendah, tidak berasa asam, dan tidak pahit. Meskipun berdasarkan skor penerimaan keseluruhan organoleptik, tempe yang diberi penambahan S. cerevisiae 1% dan digoreng
lebih disukai panelis dibandingkan perlakuan lainnya, akan tetapi, penambahan S. cerevisiae 3% menghasilkan tempe dengan kandungan beta-glukan lebih tinggi (0,250%) dibanding penambahan S. cerevisiae 1% (0,181%).

 

ABSTRACT


Ryzopus oligosporus has been considered as the main microbe that plays a role in tempe fermentation.The addition of yeast in tempeh fermentation is known to affect the flavor of tempeh and produce beta-glucans in tempeh. This study aims to determine the effect of the addition of Saccharomyces cerevisiae in the tempe fermentation to the organoleptic properties and beta-glucan content in tempeh. The treatment consisting of 2 factors, namely the concentration of Saccharomyces cerevisiae consisted of 1% and 3%, the
second treatment was the method of cooking consisting of 2 levels, namely tempeh fried and steamed. As a control, observations were also made of raw tempeh. For organoleptic testing, tempe samples were taken 15 g then cooked according to the treatment then observed organoleptically by scoring test using 25 panelists. Data were analyzed by analysis ov variance to obtain error estimators and significance tests to determine the effect between treatments. To find out the differences between treatments were analyzed using Duncan Multiple Range Test (DMRT) at the level of 5% for observations of the organoleptic properties of tempeh. Observation of organoleptic properties was carried out on unpleasant aroma, typical aroma of tempeh, sour taste and bitter taste, and overall acceptance of tempeh. The results showed that the tempeh made with the addition of S. cerevisiae 1% and fried had the best organoleptic properties. Although based on the overall organoleptic acceptance score, tempeh given 1% addition of S. cerevisiae and fried was preferred by panelists compared to other treatments, however, the addition of S. cerevisiae 3% produced tempeh with higher beta-glucan content (0,250%) than the addition of S. cerevisiae 1% (0,181%)


Keywords


Beta-Glukan, Sifat Organoleptik, Saccharomyces cerevisia, Tempe Kedelai

Full Text:

PDF

References


Aptesia, L, -T., 2013. Pemanfaatan Lacto-ba¬cillus Casei dan Tapioka dalam Upaya Menghambat Kerusakan Tempe Ke¬delai. Skripsi. Universitas Lampung. Bandar Lampung

Astuti, -S., 2009. Profil antioksidan copper, zinc-superoxide dismutase (Cu, Zn- SOD) pada tubuli seminiferi testisti¬kus yang diberi tepung kedelai kaya isoflavon, Seng (Zn) dan vitamin E. Prosiding Seminar Hasil-hasil Penelitian Unila-Dies ke 44. Bandar Lampung

Cheeseman, I, M, Brown, jr, R, M, 2000. Mi¬croscopy of curdlan structure. Dilihat 20 Januari 2019.

Di Domenico, -J., Canova, -R., Soveral, L, -F., Nied, C, -O., Costa, M, -M., Frandoloso, -R., Kreutz, L, -C., 2017. Immunomodula¬tory effects of dietary β-glucan in silver cat¬fish (Rhamdia quelen). Pesquisa Veterinária Brasileira. 37(1), 73-78. http://dx.doi. org/10.1590/s0100-736x2017000100012

Dietrich-Muszalska, -A., Olas, -B., Kontek, -B., Rabe-Jablonska, -J., 2011. Beta-glucan from Saccharomyces cerevisiae reduces plasma lipid peroxidation induced by haloperidol. International Journal of Biolog¬ical Macromolecules. 49, 113-116. https://doi.org/10.1016/j.ijbiomac.2011.03.007

Feng, X, -M., Larsen, T, -O., Schnurer, -J., 2007. Production of volatile compounds by Rhizopus oligosporus during soy¬bean and barley tempeh fermentation. International Journal of Food Microbi-ology. 113(2), 133-141. https://doi. org/10.1016/j.ijfoodmicro.2006.06.025

Figueroa, L, -E., Stafollo, M, -D., 2019. Di¬etary Fiber (Psyllium, β-Glucan). Ency¬clopedia of Food Chemistry. 2019, 61-69. https://doi.org/10.1016/B978-0-08- 100596-5.22342-1

Gultom, U, -Y., 2009. Kajian Penambahan Yeast (Saccharomyces cereviciae) Terha¬dap Kandungan Nutrisi dan Sifat Or¬ganoleptik Tempe. Skripsi. Universi¬tas Lampung. Bandar Lampung

Hetland, -G., Johnson, -E., Eide, D, -M., Grinde, -B., Samuelsen, A, B, -C., Wiker, H, -G., 2013. Antimicrobial effects of β-glucans and pectin and of the Ag¬ricus blazei based mushroom extract, andoSan TM. Examples of mouse models for pneumococcal, fecal bacterial, and mycobacterial infections. Microbial pathogens and strategies for combating them: science, technology and education (A. Méndez-Vilas, Ed.). https://www.researchgate.net/publication/304620924_Antimicrobi¬al_effects_of_b-glucans_and_pectin_ and_of_the_agaricus_Blazei-based_ mushroom_extract_andosan_examples_of_mouse_models_for_pneumococcal-_fecal_bacterial-_and_myco¬bacterial_infections

Hong, J, -Y., Son, S, -H., Hong, S, -P., Yi, S, -H., Kang, S, -H., Lee, N, -K., Paik, H, -D., 2019. Production of β-glucan, glutathione, and glutathione deriva¬tives by probiotic Saccharomyces cer-evisiae isolated from cucumber jan¬gajji. LWT. 100, 114-118. https://doi.org/10.1016/j.lwt.2018.10.048

Hunter, K, -W., Gault, R, -A., Berner, M, -D., 2002. Preparation of microparticulate beta-glucan from Saccharomyces cer¬evisiae for use in immune potentiation. Letters in Aplied Microbiology. 35(4), 267-271. https://onlinelibrary.wiley. com/doi/full/10.1046/j.1472-765X.20 02.01201.x?sid=nlm%3Apubmed

Kadar, A, -D., Aditiawati, -P., Astawan, -M., Putri, S, -P., Fukusaki, -E., 2018. Gas chromatography coupled with mass spectrometry-based metabolomics for the classification of tempe from differ-ent regions and production processes in Indonesia. Journal of Bioscience and Bioengineering. 126(3), 411-416. https://doi.org/10.1016/j.jbiosc.2018.03.020

Kasmidjo, R, -B., 1990. Tempe: Mikrobiologi dan Kimia Pengolahan serta Pemanfaatannya. PAU Pangan dan Gizi UGM, Yogyakata

Kusmiati., Swasono , Tamat, S, -R., Nuswan¬tara, -S., Isnaini, -N., 2007. Produksi dan penetapan kadar β-glukan dari tiga galur Saccharomyces cerevisiae dalam media mengandung molase. Jurnal Ilmu Kefarmasian Indonesia. 5(1), 7-16. http://jifi.farmasi.univpan¬casila.ac.id/index.php/jifi/article/ view/582

Kustyawati, M, -E., 2009. Kajian peran yeast dalam pembuatan tempe. Agritech. 29, 64-70. https://doi.org/10.22146/ agritech.9765

Kustyawati, M, -E., Nawansih, -O., Nurd¬janah, -S., 2017. Profile of aroma com¬pounds and acceptability of modified tempeh. International Food Research Journal. 24(2), 734-740. http://www.ifrj.upm.edu.my/24%20(02)%202017/ (38).pdf

Lee, J, -N., Lee, D, -Y., Ji, I, -H.,Kim, G, -E., Kim, H, -N., Sohn, -J., Kim, -S., Kim, C, -W., 2001. Purification of soluble beta-glucan with immune-enhancing activity from the cell wall of yeast. Bioscience, Biotechnology, and Biochemis¬try. 65, 837. https://doi.org/10.1271/ bbb.65.837

Lee, J, -M., 1992. Biochemical Engineering. Prentice Hall, New Jersey

Li, -F., Wang, -Z., Liu, -J., Li, -W., 2018. Radioprotective effect of orally administered beta-d-glucan derived from Saccharo¬myces cerevisiae. International Journal of Biological Macromolecules. 115, 572- 579. https://doi.org/10.1016/j.ijbio¬mac.2018.04.098

Muchtadi, T, -R., Sugiyono. 2010, Ilmu Peng¬etahuan Bahan Pangan. Alfabeta, Bandung.

Muin, -S., Hakim, -I., Febriansyah, -A., 2015. Pengaruh waktu fermentasi dan konsentrasi enzim terhadap kadar bioetanol dalam proses fermentasi nasi aking sebagai substrat organik. Jurnal Teknik Kimia. 21, 59-69. http:// jtk.unsri.ac.id/index.php/jtk/article/ view/218

Mulyowidarso, R, -K., Fleet, G, -H., Buckle, K, -A., 1989. The microbial ecology of soybean soaking for tempe produc¬tion. International Journal of Food Mi¬crobiology. 8(1), 35-46. https://doi. org/10.1016/0168-1605(89)90078-0

Nout, M, J, -R., Kiers, J, -L., 2005. A review: tempe fermentation, innovation and functionality: update into he third millennium. Journal of Applied Microbiology. 98(4), 789–805. https://doi. org/10.1111/j.1365-2672.2004.02471.x

Nuraini, -F., Nawansih, -O., 2006. Uji Sensori. Universitas Lampung

Rakhmadani, A, -H., 2013. Studi Pemanfaatan Limbah Makanan Sebagai Bahan Penghasil Etanol untuk Biofuel Melalui Proses Hidrolisis pada Kecepatan Pengadukan dan Waktu Fermentasi yang Berbeda. Tesis. Universitas Diponegoro. Semarang

Roubos-van den Hil, P, -J., Rob Nout, M, -J., Van der Muelen, -J., Gruppen, -H., 2010. Bioactivity of tempe by inhibiting adhesion of ETEC to intestinal cells, as influenced by fermentation substrates and starter pure cultures. Food Micro¬biology. 27(5), 638-644. https://doi.org/10.1016/j.fm.2010.02.008

Samson, R, -A., Kooij, -V., de Boer, -E., 1987. Microbiological quality of commercial tempeh in the Netherlands. Journal of Food Protection. 50, 9294. https://doi. org/10.4315/0362-028X-50.2.92

Tonthowi, -A., Kusmiati, Nuswantara, -S., 2007. Produksi β-Glukan Saccharomyces cerevisiae dalam media dengan sumber nitrogen berbeda pada air-lift Fermentor. Biodiversitas. 8(4), 253-256. https:// doi.org/10.13057/biodiv/d080401

Villijoen, B, -C., Greyling, -T., 1995. Yeast associated with cheddar and gouda making. International Journal of Food Microbiology. 28, 79-88. https://doi. org/10.1016/0168-1605(94)00114L

Welthagen, J, -J., Vilijoen, B, -C., 1999. The isolation and identification of yeasts obtained during the manufacture and ripening of cheddar cheese. Food Microbiology. 16(1), 63-73. https://doi.org/10.1006/fmic.1998.0219

Widyastuti, N., Baruji, -T., Giarni, -R., Is¬nawan, -H., Wahyudi, -P., Donawati., 2011. Analisa kandungan beta-glukan larut air dan larut alkali dari tubuh buah jamur tiram (Pleurotus ostreatus) dan shitake (Lentimus edodes). Jurnal Sains dan Teknologi Indonesia. 13(3), 182- 191. http://dx.doi.org/10.29122/jsti. v13i3.894

Wihandini, D, -B., Arsanti, -L., Wijarnaka, -A., 2012. Sifat fisik, kadar protein, dan uji organoleptik tempe kedelai hitam dan tempe kedelai kuning dengan berbagai metode pemasakan. Nutrisia. 14(1), 1-61

Yuan, -B., Ritzoulis, -C., Chen, -J., 2019. Rheological investigations of beta glucan functionality: Interactions with mucin. Food Hydrocolloids. 87, 180-186. https:// doi.org/10.1016/j.foodhyd.2018.07.049




DOI: http://dx.doi.org/10.21776/ub.jtp.2019.020.02.6

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Samsul Rizal, Maria Erna Kustyawati

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.