Joni Joni, Renaldi Sebayang, Johana Marpaung, Radite Praeko Agus Setiawan, Armansyah Halomoan Tambunan, Kiman Siregar



PPembersihan partikel-partikel pengotor dari gas-gas hasil gasifikasi tandan kosong kelapa sawit merupakan salah satu proses penting yang harus dilakukan untuk mendapatkan gas pembawa energi dengan kemurnian yang lebih baik. Pemisahan partikel-partikel tersebut dari umumnya dilakukan dengan menggunakan siklon. Konstruksi dan kondisi operasi siklon, seperti suhu gas yang masuk, berperan penting dalam menentukan kinerja pemisahan partikel dari gas tersebut. Penelitian ini bertujuan untuk mengkaji pengaruh perubahan suhu gas terhadap kinerja siklon dalam memisahkan partikulat dan tar dari gas-gas hasil gasifikasi tandan kosong kelapa sawit. Hasil kajian menunjukkan bahwa peningkatan suhu gas yang masuk ke siklon mampu memisahkan partikel berukuran 5–6 μm di kisaran suhu 200–300 °C pada efisiensi minimum 50%. Hasil perhitungan efisiensi pengumpulan rata-rata mencapai 98,23%, sedangkan hasil pengukuran adalah 85,56%. Hasil perhitungan dan ekperimen terhadap tekanan jatuh pada siklon, masing-masing, adalah 100,11 dan 87 mmH2 O, berada pada kisaran standar tekanan jatuh yang disarankan. Efisiensi dan tekanan jatuh yang diperoleh menunjukkan bahwa siklon dapat bekerja dengan baik. Hasil kajian menunjukkan bahwa siklon sebaiknya digunakan pada tahap awal dari proses pemisah partikel dari gas hasil gasifikasi, pada saat suhu gas masih tinggi

Kata kunci : Efisiensi Pengumpulan; Pengurangan Diameter; Penurunan Tekanan; Suhu Gas; Tar




Gas purification is one of a very crucial process required to be performed in order to obtain a better quality of gasses produced by grasification of oil palm empty fruit bunches. A cyclone is usually used in the purification process to separate particles and tarss from the gas. Particle separating performance of a cyclone is affected by its construction and operating conditions, such as temperature of the entering gas. The objectives of this study is to examine the effect of the entering gas temperature to the cyclone performance in separating particulates and tar from gases produced by gasification of oil palm empty fruit bunch. The results shows that the cyclone was capable in separating particles with size of 5-6 μm at entering gas temperature range of 200- 300 °C, at a minimum efficiency of 50%. The calculated average collection efficiency was 98.23% while the experimental results were 84.56%. Calculation and experimental data on pressure drop within the cylone was 100.11 and 97.0 mmH2 O, respectively, and fall within the required standard pressure drop. The collection efficiency and pressure drop indicated that the cyclone performed well. The study also suggests that cyclone is best to be used at the first row of the purification system for gases produced by gasification of empty fruit bunch since the temperature is still high enough


Keywords : Collection Efficiency; Diameter Cut Size; Pressures Drop; Temperature of Gas; Tar



Efisiensi Pengumpulan; Pengurangan Diameter; Penurunan Tekanan; Suhu Gas; Tar

Full Text:



EPA. 2019. Air pollution control technology fact sheet. Dilihat 1 Juli 2019.

Gawali, S, -S., Bhambere, M, -B., 2015. Effect of design and operating parameters on the performance of cyclone sepa- rator - A review. International Journal of Mechanical Engineering and Robotics Research. 4(1), 244–248. http://www. ijmerr.com/show-126-217-1.html

Gimbun, -J., Choong, T, S, -Y., Razi, A, -F., Ghuah, T, -G., 2004. Prediction of the effect of dimension, particle density, temperature, and inlet velocity on cyclone collection efficiency. Jurnal Teknologi Universiti Teknologi Malaysia. 40, 37-50. https://doi.org/10.11113/ jt.v40.421

Gimbun, J., Chuah, TG., Razi, AF., Choong, TSY. 2005. The influence pf tempera- ture and inlet velocity on cyclone pressure drop: a CFD study. Chemical Engineering and Processing: Process In- tensification. 44(1), 7-12. https://doi. org/10.1016/j.cep.2004.03.005

Hsu, C, -W., Huang, S, -H., Lin, C, -W., Hsiao,T, -C., Lin, W, -Y., Chen, C, -C., 2014. An experimental study on perfor- mance improvement of the stairmang cyclone design. Aerosol and Air Quality Research. 14(3), 1003-1016. https://doi. org/10.4209/aaqr.2013.04.0129

Iozia, D, -L., Leith, -D., 1990. The logistic function dan cyclone fractional ef- ficiency. Aerosol Science and Tech- nology. 12(3), 598-606. https://doi. org/10.1080/02786829008959373

Jeje, -O., Mattar, -L. 2004. Comparison of cor- relations for viscosity of sour natural gas. Petroleum Society of Canada. https://doi.org/10.2118/2004-214

Joni., Tambunan, A, -H., Setiawan, R, P, -A., Siregar, -K., 2019. Study on characteristics of oil palm empty fruit bunch to predict condensation temperature of tar from its pyrolysis gas. Interna- tional Journal of Oil Palm. 2(3), 120-130. http://ijop.id/index.php/ijop/arti- cle/download/42/32

Lee, A, -L., Gonzalez, M, -H., Eakin, B,-E., 1966. The viscosity of natural gases. Journal of Petroleum Technol- ogy. 18(8), 997–1000. https://doi. org/10.2118/1340-PA

Marinuc, -M., Rus, -F., 2011. The effect of particle size and input velocity on cy- clone separation process. Bulletin of the Transilvania University of Brasov. 4(2), 117–122. http://webbut.unitbv.ro/BU2011/Series%20II/BULETIN%20II/Marinuc_M.pdf

Miller, BG. 2017. Clean Coal Engineering Tech nology. Elsevier, London

Parker, -R., Jain, -R., Calvert, -S., Abbot, -J., 1981. Particle collection in cyclone at high temperature and high pres- sure. Environmental Science and Tech- nology. 15(4), 451- 458. https://doi.org/10.1021/es00086a010

Ramachandran, -G., Leith, -D., Dirgo, -J., Feldman, -H., 1991. Cyclone optimiza- tion based on a new empirical model for pressure drop. Aerosol Science and Technology. 15(2), 135-148. https://doi. org/10.1080/02786829108959520

Yang, -X., Zhang, -S., Zhu, -W., 2017. A new model for the accurate calculation of natural gas viscosity. Natural Gas In- dustry B. 4(2), 100–105. https://doi. org/10.1016/j.ngib.2017.07.011

Zhao, B. 2012. Prediction of gas-particle sepa- ration efficiency for cyclones: A time- of-flight model. Separation and Purifica- tion Technology. 85, 171-177. https:// doi.org/10.1016/j.seppur.2011.10.006

Zhao, -B., Wang, -D., Su, -Y., Wang, H, -L., 2020. Gas-particle cyclonic separation dynamics: Modeling and characteriza- tion. Separation & Purification Reviews. 49(2), 1–31. https://doi.org/10.1080/15422119.2018.1528278

DOI: http://dx.doi.org/10.21776/ub.jtp.2020.021.03.7


  • There are currently no refbacks.

Copyright (c) 2020 Joni, Renaldi Sebayang, Johana Marpaung , Radite Praeko Agus Setiawan, Armansyah Halomoan Tambunan, Kiman Siregar

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.