NANOENKAPSULASI EKSTRAK KULIT MELINJO MERAH (Gnetum gnemon L.) PADA BERBAGAI SUHU INLET DAN LAJU ALIR SPRAY DRYER

Authors

  • Bambang Kunarto Universitas Semarang
  • Iswoyo Iswoyo Universitas Semarang

DOI:

https://doi.org/10.21776/ub.jtp.2021.022.03.6

Keywords:

β-siklodekstrin, Kulit Melinjo Merah, Poloksamer, Spray Drying

Abstract

ABSTRAK

 

Kulit melinjo merah berpotensi sebagai sumber antioksidan. Enkapsulasi perlu dilakukan untuk melindungi ekstrak kulit melinjo merah yang kurang stabil. Tujuan penelitian ini adalah nanoenkapsulasi ekstrak etanolik kulit melinjo merah menggunakan enkapsulan β-siklodekstrin melalui tahap nanomulsifikasi dengan berbagai konsentrasi surfaktan poloksamer (0,5; 1, dan 1,5%). Selanjutnya dilakukan spray drying pada berbagai suhu inlet (120; 130, dan 140 °C) dan laju alir bahan (4, 5, dan 6 ml/menit). Hasil penelitian menunjukkan bahwa nanoemulsi dengan ukuran 99,32 ± 0,32nm, indeks polidispersitas 0,29 ± 0,04, viskositas 2,97 ± 0,53 cp, turbiditas 197,56 ± 0,20NTU dan potensial zeta -34,25 ± 0,04 mV diperoleh dengan penambahan poloksamer 1%. Spray drying pada suhu inlet 130 °C dan laju alir 5 ml/menit mampu menghasikan nanokapsul ekstrak etanolik kulit melinjo merah dengan yield 31,98 ± 0,11%, efisiensi enkapsulasi 83,28 ± 0,16% dan aktivitas antioksidan (RSA-DPPH 69,94 ± 0,07% dan reducing power 77,57 ± 0,43%)

 

ABSTRACT

 

Melinjo red peels has the potential as a source of antioxidants. Encapsulation is needed to protect the unstable melinjo red peels extract. The aim of this study was to nanoencapsulate the ethanolic extract of melinjo red peels using β-cyclodextrin encapsulants through the nanomulsification stages with various concentrations of poloxamer surfactants (0.5; 1 and 1.5%). Furthermore, spray drying was carried out at various inlet temperatures (120; 130 and 140 °C) and material flow rates (4; 5 and 6 ml/min). The results showed that the nanoemulsion with a particle size of 99.32 ± 0.32 nm, polydispersity index 0.29 ± 0.04, viscosity 2.97 ± 0.53 cp, turbidity 197.56 ± 0.20 NTU and zeta potential -34.25 ± 0.04 mV was obtained by adding 1% poloxamer. Spray drying at an inlet temperature of 130 °C and a flow rate of 5 ml/min was able to produce nanocapsules of ethanolic extract from melinjo red peels with a yield of 31.98 ± 0.11%, encapsulation efficiency 83.28 ± 0.16% and antioxidant activity (RSA-DPPH 69.94 ± 0.07% and reducing power 77.57 ± 0.43%)

 

Author Biographies

Bambang Kunarto, Universitas Semarang

Jurusan Teknologi Hasil Pertanian – Fakultas Teknologi Pertanian – Universitas Semarang

Iswoyo Iswoyo, Universitas Semarang

Jurusan Teknologi Hasil Pertanian – Fakultas Teknologi Pertanian – Universitas Semarang

References

Ali, D,Y., 2013. Optimasi Nanoenkapsulasi Asap Cair Tempurung Kelapa dengan Response Surface Methodology. Tesis Magister. Universitas Gadjah Mada. Yogyakarta

Apriliyanti, M, -W., Ardiyansyah, -M., Handayani, A, -M., 2018. Antioxidant activity, total phenol, and sensory properties of melinjo peel tea with pre-treatment. IOP Conference Series: Earth and Environmental Science. 207, 1–7. https://doi.org/10.1088/1755-1315/207/1/012044

Asprea, -M., Leto, -I., Bergonzi, M, -C., Bilia, A, -R., 2017. Thyme essential oil loaded in nanocochleates: Encapsulation efficiency, in vitro release study and antioxidant activity. LWT - Food Science and Technology. 77, 497–502. https://doi.org/10.1016/j.lwt.2016.12.006

Babu, T, -A., Kumar, -S., Smith, D, -D., Lakshmipathy, -R., 2019. The physicochemical properties of spray-dried papaya leaf powders. International Journal of Current Microbiology and Applied Sciences. 8, 139–146. https://doi.org/10.20546/ijcmas.2019.801.017

Bilgin, -M., Şahin, -S., 2013. Effects of geographical origin and extraction methods on total phenolic yield of olive tree (Olea europaea) leaves. Journal of the Taiwan Institute of Chemical Engineers. 44, 8–12. https://doi.org/10.1016/j.jtice.2012.08.008

Chowdary, K, P, -R., Srinivasan, -S., 2011. Effects of cyclodextrins, tween-80 and PVP on the solubility and dissolution rate of etoricoxib. Journal of Pharmaceutical Sciences and Research. 3(7), 1344–1348

Correâ-Filho, L, -C., Lourenço, M, -M., Moldaõ-Martins, -M., Alves, V, -D., 2019. Microencapsulation of β-Carotene by spray drying: Effect of wall material concentration and drying inlet temperature. International Journal of Food Science. 2019, 1–12. https://doi.org/10.1155/2019/8914852

Danaei, -M., Dehghankhold, -M., Ataei, -S., Davarani, -F, -H., Javanmard, -R., Dokhani, -A., Khorasani, -S., Mozafari, M. -R., 2018. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 10, 1–17. https://doi.org/10.3390/pharmaceutics10020057

Dehcheshmeh, M, -A., Fathi, -M., 2019. Production of core-shell nanofibers from zein and tragacanth for encapsulation of saffron extract. International Journal of Biological Macromolecules. 122, 272–279. https://doi.org/10.1016/j.ijbiomac.2018.10.176

Devina, N., 2011. Optimasi Proses Ekstraksi Kulit Melinjo Merah (Gnetum gnemon L.) dan Pengaruh pH dan Cahaya Terhadap Aktivitas Antioksidan. Skripsi Sarjana. Universitas Pelita Harapan. Karawaci

Dube, -A., Ng, -K., Nicolazzo, J, -A., Larson, -I., 2010. Effective use of reducing agents and nanoparticle encapsulation in stabilizing catechins in alkaline solution. Food Chemistry. 122, 662–667. https://doi.org/10.1016/j.foodchem.2010.03.027

Falleh, -H., Ksouri, -R., Lucchessi, M, -E., Abdelly, -C., Magné, -C., 2012. Ultrasound-assisted extraction: Effect of extraction time and solvent power on the levels of polyphenols and antioxidant activity of Mesembryanthemum edule L. Aizoaceae shoots. Tropical Journal of Pharmaceutical Research. 11, 243–249. https://doi.org/10.4314/tjpr.v11i2.10

Fazaeli, -M., Emam-Djomeh, -Z., Ashtari, -A,-K., Omid, -M., 2012. Effect of spray drying conditions and feed composition on the physical properties of black mulberry juice powder. Food and Bioproducts Processing. 90, 667–675. https://doi.org/10.1016/j.fbp.2012.04.006

Ho, L, -P., Pham, A, -H., Le, V, V, -M., 2015. Effects of core/wall ratio and inlet temperature on the retention of antioxidant compounds during the spray drying of sim (Rhodomyrtus tomentosa) juice. Journal of Food Processing and Preservation. 39, 2088–2095. https://doi.org/10.1111/jfpp.12452

Jafari, S, -M., Ghalenoei, -M, -G., Dehnad, -D., 2017. Influence of spray drying on water solubility index, apparent density, and anthocyanin content of pomegranate juice powder. Powder Technology. 311, 59–65. https://doi.org/10.1016/j.powtec.2017.01.070

Kalogeropoulos, -N., Yannakopoulou, -K., Gioxari, -A., Chiou, -A., Makris, D, -P., 2010. Polyphenol characterization and encapsulation in β-cyclodextrin of a flavonoid-rich Hypericum perforatum (St John’s wort) extract. LWT - Food Science and Technology. 43, 882–889. https://doi.org/10.1016/j.lwt.2010.01.016

Karaca, A, -C., Guzel, -O., Ak, M, -M., 2016. Effects of processing conditions and formulation on spray drying of sour cherry juice concentrate. Journal Of The Science of Food and Agriculture. 96, 449–455. https://doi.org/10.1002/jsfa.7110

Krishnaiah, -D., Sarbatly, -R., Nithyanandam, -R., 2012. Microencapsulation of Morinda citrifolia L. extract by spray-drying. Chemical Engineering Research and Design. 90, 622–632. https://doi.org/10.1016/j.cherd.2011.09.003

Murugesan, -R., Orsat, -V., 2011. Spray drying of elderberry (Sambucus nigra L.) juice to maintain its phenolic content. Drying Technology. 29, 1729–1740. https://doi.org/10.1080/07373937.2011.602485

Muzaffar, -K., Kumar, -P., 2015. Parameter optimization for spray drying of tamarind pulp using response surface methodology. Powder Technology. 279, 179–184. https://doi.org/10.1016/j.powtec.2015.04.010

Oroian, -M., Dranca, -F., Ursachi, -F., 2020. Comparative evaluation of maceration, microwave and ultrasonic-assisted extraction of phenolic compounds from propolis. Journal of Food Science and Technology. 57, 70–78. https://doi.org/10.1007/s13197-019-04031-x

Ozsoy, -N., Can, -A., Yanardag, -R., Akev, -N., 2008. Antioxidant activity of Smilax excelsa L. leaf extracts. Food Chemistry. 110, 571–583. https://doi.org/10.1016/j.foodchem.2008.02.037

Paini, -M., Aliakbarian, -B., Casazza, A,-A., Lagazzo, -A., Botter, -R., Perego, -P., 2015. Microencapsulation of phenolic compounds from olive pomace using spray drying: A study of operative parameters. LWT - Food Science and Technology. 62, 177–186. https://doi.org/10.1016/j.lwt.2015.01.022

Royshanpour, -S., Tavakoli, -J., Beigmohammadi, -F., Alaei, -S., 2021. Improving antioxidant effect of phenolic extract of Mentha piperita using nanoencapsulation process. Journal of Food Measurement and Characterization. 15, 23–32. https://doi.org/10.1007/s11694-020-00606-x

Salvia-Trujillo, -L., Rojas-Graü, M, -A., Soliva-Fortuny, -R., Martín-Belloso, -O., 2013. Effect of processing parameters on physicochemical characteristics of microfluidized lemongrass essential oil-alginate nanoemulsions. Food Hydrocolloids. 30, 401–407. https://doi.org/10.1016/j.foodhyd.2012.07.004

Savić-Gajić, -I., Savić, I, -M., Nikolić, V, -D., Nikolić, L, -B., Popsavin, M, -M., Rakić, S, -J., 2017. The improvement of phtostability and antioxidant activity of trans-resveratrol by cyclodextrins. Advanced Technologies 6, 18–25. https://doi.org/10.5937/savteh1702018S

Shamaei, -S., Seiiedlou, S, -S., Aghbashlo, -M., Tsotsas, -E., Kharaghani, -A., 2017. Microencapsulation of walnut oil by spray drying: Effects of wall material and drying conditions on physicochemical properties of microcapsules. Innovative Food Science & Emerging Technologies. 39, 101–112. https://doi.org/10.1016/j.ifset.2016.11.011

Shrotriya, S, -N., Ranpise, N, -S., Vidhate, B, -V., 2017. Skin targeting of resveratrol utilizing solid lipid nanoparticle-engrossed gel for chemically induced irritant contact dermatitis. Drug Delivery and Translational Research. 7, 37–52. https://doi.org/10.1007/s13346-016-0350-7

Sugita, -P., Ambarsari, -L., Farichah, -F., 2013. Increasing amount and entrapment efficiency of chitosan-ketoprofen nanoparticle using utrasonication method with varied time and amplitude. IJRRAS. 14, 612–618.

Sukhbir, -S., Yashpal, -S., Sandeep, -A., 2016. Development and statistical optimization of nefopam hydrochloride loaded nanospheres for neuropathic pain using Box–Behnken design. Saudi Pharmaceutical Journal. 24, 588–599. https://doi.org/10.1016/j.jsps.2015.03.020

Surassmo, -S., Min, S, -G., Bejrapha, -P., Choi, M, -J., 2010. Effects of surfactants on the physical properties of capsicum oleoresin-loaded nanocapsules formulated through the emulsion-diffusion method. Food Research International. 43, 8–17. https://doi.org/10.1016/j.foodres.2009.07.008

Talón, -E., Lampi, A, -M., Vargas, -M., Chiralt, -A., Jouppila, -K., González-Martínez, -C., 2019. Encapsulation of eugenol by spray-drying using whey protein isolate or lecithin: Release kinetics, antioxidant and antimicrobial properties. Food Chemistry. 295, 588–598. https://doi.org/10.1016/j.foodchem.2019.05.115

Tsai, C,-C., Chou, C,-H., Liu, Y,-C., Hsieh, C,-W., 2014. Ultrasound-assisted extraction of phenolic compounds from Phyllanthus emblica L. and evaluation of antioxidant activities. International Journal of Cosmetic Science. 36, 471–476. https://doi.org/10.1111/ics.12143

Tupuna, D, -S., Paese, -K., Guterres, S, -S., Jablonski, -A., Flôres, S, -H., Rios, A, de -O., 2018. Encapsulation efficiency and thermal stability of norbixin microencapsulated by spray-drying using different combinations of wall materials. Industrial Crops and Products. 111, 846–855. https://doi.org/10.1016/j.indcrop.2017.12.001

Yeni, G., 2015. Rekayasa Proses Nanoenkapsulasi Konsentrat Katekin dari Gambir (Uncaria gambir Roxb.) sebagai Antioksidan. Disertasi Doktor. IPB University. Bogor

Zhou, -C., Cheng, -X., Zhao, -Q., Yan, -Y., Wang, -J., Huang, -J., 2013. Self-assembly of nonionic surfactant tween 20@2β-CD Inclusion complexes in dilute solution. Langmuir. 29, 13175–13182. https://doi.org/10.1021/la403257v

Zu, -Y., Wu, -W., Zhao, -X, Li, -Y., Wang, -W., Zhong, -C., Zhang, -Y., Zhao, -X, 2014. Enhancement of solubility, antioxidant ability and bioavailability of taxifolin nanoparticles by liquid antisolvent precipitation technique. International Journal of Pharmaceutics. 471, 366–376. https://doi.org/10.1016/j.ijpharm.2014.05.049

Downloads

Published

2021-12-31

Issue

Section

Articles